Have a personal or library account? Click to login
Mixed harmonic directional variational inequalities Cover

Mixed harmonic directional variational inequalities

Open Access
|Jan 2025

References

  1. A. A. Alshejari, M. A. Noor, K. I. Noor, Inertial algorithms for bifunction harmonic variational inequalities, Int. J. Anal. Appl., vol. 22, 2024, ID=46, 1-19, doi.org/10.28924/2291-8639-22-2024-46.
  2. A. A. Alshejari, M. A. Noor, K. I. Noor, New auxiliary principle technique for generalharmonic diectional variational inequalities, Int. J. Anal. Appl., vol. 22
  3. F. Al-Azemi, O. Calin, Asian options with harmonic average, Appl. Math. Inform. Sci., vol. 9, 2015, 1-9
  4. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection- proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., vol. 14, 2003, 773-782
  5. G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., vol. 335, 2007, 1294-1308
  6. F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983
  7. R. W. Cottle, Jong-S. Pang, R. E. Stone, The Linear Complementarity Problem, SIAM Publication, Philadelphia, USA, 1992
  8. G. Cristescu, L. Lupsa, Non-Connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, Holland, 2002
  9. F. Giannessi, A. Maugeri, M. S. Pardalos, Equilibrium Problems: Nonsmooth Optimization and va riational Inequality Models, Kluwer Academic, Dordrecht, Holland, 2001
  10. R. Glowinski, J-L. Lions, R. Tremolieres, Numerical Analysis of va riational Inequalities, North-Holland, Amsterdam, Holland, 1981
  11. J. K. Kim, A. Lakhnotra, T. Ram, General mixed harmonic variational inequalities, Nonlinear Functional Analysis and Applications, vol. 29, no. 2, 2024, 517-526 https://doi.org/10.22771/nfaa.2024.29.02.12
  12. J. L. Lions, G. Stampacchia, va riational inequalities, Commun. Pure Appl. Math., vol. 20, 1967, 492-512
  13. M. A. Noor, On va riational Inequalities, PhD Thesis, Brunel University, London, UK, 1975
  14. M. A. Noor, Fixed point approach for complementaritty problems, J. Math. Anal. Appl., vol. 133, 1988, 437-448
  15. M. A. Noor, General algorithm for variational inequalities, J. Optim. Theory Appl., vol. 73, 1992, 409-413
  16. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., vol. 251, 2000, 217-229
  17. M. A. Noor, K. I. Noor, Some novel aspects and applications of Noor iteration and Noor orbits, J. Advanced Math. Studies, vol. 17, no. 3, 2024, 276-284
  18. M. A. Noor, Some developments in general variational inequalities, Appl. Math. Comput., vol. 152, 2004, 199-277
  19. M. A. Noor, K. I. Noor, Some new trends in mixed variational inequalities, J. Advanc. Math. Studies, vol. 15, no. 2, 2022, 105-140
  20. M. A. Noor, K. I. Noor, Harmonic variational inequalities, Appl. Math. Inform. Sci., vol. 10, no. 5, 2016, 1811-1814
  21. M. A. Noor, K. I. Noor, Some imlpicit shemses for harmonic variational inequalities, Inter. J. Anal. Appl., vol. 12, no. 1, 2016, 10-14
  22. M. A. Noor, K. I. Noor, Some New classes of harmonic hemivariational in-equalities, Earthline J. Math. Sci., vol. 13, no. 2, 2023, 473-495
  23. M. A. Noor, K. I. Noor, Auxiliary principle technique for solving trifunction harmonic variational inequalities, RAD HAZU Matemat.Znanost, vol. 28/558, 2024, In Press
  24. M. A. Noor, K. I. Noor, S. Iftikhar, Strongly generalized harmonic convex func-tions and integral inequalities, J. Math. Anal., vol. 7, no. 3, 2016, 66-77
  25. M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalitiess, Acta Applicand. Math., vol. 170, no. 1, 2020, 981-1046
  26. M. A. Noor, K. I. Noor, Th. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math., vol. 47, 1993, 285-312
  27. M. A. Noor, K. I. Noor, Th. M. Rassias, Set-valued resolvent equations and mixed variational inequalities, J. Math. Anal. Appl., vol. 220, 1998, 741-759
  28. M. A. Noor, W. Oettli, On general nonlinear complementarity problems and quasi equilibria, Le Math.(Catania), vol. 49, 1994, 313-331
  29. M. Patriksson, Nonlinear Programming and va riational Inequalities: A Unified Approach, Kluwer Academic Publishers, Dordrecht, Holland, 1999
  30. B. T. Polyak, Some methods of speeding up the convergence of iterative methods, USSR Comput. Math. Math. Phys., vol. 4, 1964, 1-17
  31. G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, Comptes Rendus de l’Academie des Sciences, Paris, vol. 258, 1964, 4413-4416
DOI: https://doi.org/10.2478/gm-2024-0005 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 59 - 72
Submitted on: May 18, 2024
Accepted on: Jul 20, 2024
Published on: Jan 27, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Muhammad Aslam Noor, Khalida Inayat Noor, Kunrada Kankam, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.