Have a personal or library account? Click to login
Third-order strong differential subordinations involving fractional integral of confluent (Kummer) and Gaussian hypergeometric functions Cover

Third-order strong differential subordinations involving fractional integral of confluent (Kummer) and Gaussian hypergeometric functions

Open Access
|Jan 2025

References

  1. J. A. Antonino, S.S. Miller, Third-order differential inequalities and subordinations in the complex plane, Complex Var. Elliptic Equ., vol. 56, no. 5, 2011, 439-454. https://doi.org/10.1080/17476931003728404
  2. S. S. Miller, P. T. Mocanu, Second order-differential inequalities in the complex plane, J. Math. Anal. Appl., vol. 65, 1978, 298-305.
  3. S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michig. Math. J., vol. 28, 1981, 157-171.
  4. V. Gupta, T. M. Rassias, P. N. Agrawal, A. M. Acu, Recent Advances in Constructive Approximation Theory, Cham, Springer, 2018.
  5. H. M. Zayed, T. Bulboacă, Applications of differential subordinations involving a generalized fractional differintegral operator, J. Inequal. Appl., 2019, 242. https://doi.org/10.1186/s13660-019-2198-0
  6. H. Al-Janaby, F. Ghanim, M. Darus, On The Third-Order Complex Differential Inequalities of ζ-Generalized-Hurwitz–Lerch Zeta Functions, Mathematics, vol. 8, 2020, 845. https://doi.org/10.3390/math8050845
  7. A. A. Attiya, T. M. Seoudy, A. Albaid, Third-Order Differential Subordination for Meromorphic Functions Associated with Generalized Mittag-Leffler Function, Fractal Fract., vol. 7, 2023, 175. https://doi.org/10.3390/fractalfract7020175
  8. W. G. Atshan, R. A. Hiress, S. Altınkaya, On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator, Symmetry, vol. 14, 2022, 418. https://doi.org/10.3390/sym14020418
  9. G. I. Oros, G. Oros, L. F. Preluca, Third-Order Differential Subordinations Using Fractional Integral of Gaussian Hypergeometric Function, Axioms 2023, 12, 133. https://doi.org/10.3390/axioms12020133
  10. G. I. Oros, G. Oros, L. F. Preluca, New Applications of Gaussian Hypergeo-metric Function for Developments on Third-Order Differential Subordinations, Symmetry, vol. 15, 2023, 1306. https://doi.org/10.3390/sym15071306
  11. M. M. Soren, A. K. Wanas, L. -I. Cotîrlˇa, Results of Third-Order Strong Differential Subordinations, Axioms, vol. 13, 2024, 42. https://doi.org/10.3390/axioms13010042
  12. G. I. Oros, G. Oros, Strong differential subordination, Turk. J. Math., vol. 33, 2009, 249-257.
  13. J. A. Antonino, S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations, J. Differ. Equ., vol. 114, 1994, 101-105.
  14. G. I. Oros, On a new strong differential subordination, Acta Univ. Apulensis, vol. 32, 2012, 243-250.
  15. P. Arjomandinia, R. Aghalary, Strong subordination and superordination with sandwich-type theorems using integral operators, Stud. Univ. Babeş-Bolyai Math., vol. 66, 2021, 667-675.
  16. A. Alb Lupaş, Applications of a Multiplier Transformation and Ruscheweyh Derivative for Obtaining New Strong Differential Subordinations, Symmetry, vol. 13, 2021, 1312. https://doi.org/10.3390/sym13081312
  17. R. Aghalary, P. Arjomandinia, On a first order strong differential subordination and application to univalent functions, Commun. Korean Math. Soc., vol. 37, 2022, 445-454.
  18. A. Alb Lupaş, F. Ghanim, Strong Differential Subordination and Superordination Results for Extended q-Analogue of Multiplier Transformation, Symmetry, vol. 15, 2023, 713. https://doi.org/10.3390/sym15030713
  19. H. Tang, H. M. Srivastava, S.-H. Li, L. Ma, Third-Order Differential Subordination and Superordination Results for Meromorphically Multivalent Functions Associated with the Liu-Srivastava Operator, Abstr. Appl. Anal., 2014, 1-11.
  20. L. De Branges, A proof of the Bieberbach conjecture. Acta Math., vol. 154, 1985, 137-152. http://doi.org/10.1007/BF02392821
  21. S. S. Miller, P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric Functions, Proc. Am. Math. Soc., vol. 110, 1990, 333-342. http://dx.doi.org/10.1090/S0002-9939-1990-1017006-8
  22. S. Owa, On the distortion theorems I, Kyungpook Math. J., vol. 18, 1978, 53-59.
  23. S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., vol. 39, 1987, 1057-1077.
  24. G. I. Oros, G. Oros, A. M. Rus, Applications of confluent hypergeometric function in strong superordination theory, Axioms, vol. 11, no. 5, 2022, 209. https://doi.org/10.3390/axioms11050209
  25. A. Alb Lupaş, G. I. Oros, Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function, Symmetry, vol. 13, 2021, 327. https://doi.org/10.3390/sym13020327
  26. A. Alb Lupaş, G. I. Oros, Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions, Symmetry, vol. 14, 2022, 427. https://doi.org/10.3390/sym14020427
  27. G. I. Oros, S. Dzitac, Applications of Subordination Chains and Fractional Integral in Fuzzy Differential Subordinations, Mathematics, vol. 10, 2022, 1690. https://doi.org/10.3390/math10101690
DOI: https://doi.org/10.2478/gm-2024-0003 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 28 - 45
Submitted on: Jul 20, 2024
Accepted on: Aug 10, 2024
Published on: Jan 27, 2025
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Lavinia Florina Preluca, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.