References
- S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations modified Adomian decomposition method, Appl. Math. Comput., 145, 2003, 887-893.
- G. Adomian, Nonlinear Stochastic Systems and Applications to Physics, Kluwer Academic Publishers, Dordrecht, 1989.
- E. Babolian, J. Biazar, On the order of convergence of Adomian method, Appl. Math. Comput., 130, 2002, 383-387.
- E. Babolian, J. Biazar, Solution of nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 132, 2002, 167-172.
- C. Chun, Iterative methods improving Newton’s method by the decomposition method, Comput. Math. Appl., 50, 2005, 1559-1568.
- C. Chun, Y. Ham, A one-parameter fourth-order family of iterative methods for nonlinear equations, Appl. Math. Comput., 189, 2007, 610-614.
- C. Chun, H. J. Bae, B. Neta, New families of nonlinear third-order solvers for finding multiple roots, Comput. Math. Appl., 57, 2009, 1574-1582.
- C. Chun, B. Neta, Basin of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots, J. Math. Comput. In Simulation, 109, 2015, 74-91.
- C. Chun, B. Neta, A third order modification of Newton’s method for multiple roots, Appl. Math. Comput., 211, 2009, 474-479.
- V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316, 2006, 753-763.
- V. I. Hasanov, I. G. Ivanov, G. Nedzhibov, A new modification of Newton method, Appl. Math. Eng., 27, 2002, 278-286.
- H. H. H. Homeier, On Newton-type methods for multiple roots with cubic convergence, J. Comput. Appl. Math., 231, 2009, 249-254.
- E. Isaacson, H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, Inc., New York, USA, 1966.
- B. Neta, C. Chun, On a family of Laguerre methods to find multiple roots of nonlinear equations, J. Appl. Math. Comput., 219, 2013, 10987-11004.
- B. Neta, C. Chun, M. Scott, On a development of iterative methods for multiple roots, J. Appl. Math. Comput., 224, 2013, 358-361.
- M. A. Noor, K. H. Noor, Some iterative schemes for nonlinear equations, Appl. Math. Comput., 183, 2006, 774-779.
- N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math., 51, 1994, 131-133.
- E. Schröder, Über unendlich viele algorithmen zur auflösung der gleichungen, Math. Annal. 2, 1870, 317-365.