Have a personal or library account? Click to login
Iterative methods for solving scalar equations Cover

Iterative methods for solving scalar equations

By: Arif Rafiq,  Faisal Ali and  Ana Maria Acu  
Open Access
|Mar 2024

References

  1. S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations modified Adomian decomposition method, Appl. Math. Comput., 145, 2003, 887-893.
  2. G. Adomian, Nonlinear Stochastic Systems and Applications to Physics, Kluwer Academic Publishers, Dordrecht, 1989.
  3. E. Babolian, J. Biazar, On the order of convergence of Adomian method, Appl. Math. Comput., 130, 2002, 383-387.
  4. E. Babolian, J. Biazar, Solution of nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 132, 2002, 167-172.
  5. C. Chun, Iterative methods improving Newton’s method by the decomposition method, Comput. Math. Appl., 50, 2005, 1559-1568.
  6. C. Chun, Y. Ham, A one-parameter fourth-order family of iterative methods for nonlinear equations, Appl. Math. Comput., 189, 2007, 610-614.
  7. C. Chun, H. J. Bae, B. Neta, New families of nonlinear third-order solvers for finding multiple roots, Comput. Math. Appl., 57, 2009, 1574-1582.
  8. C. Chun, B. Neta, Basin of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots, J. Math. Comput. In Simulation, 109, 2015, 74-91.
  9. C. Chun, B. Neta, A third order modification of Newton’s method for multiple roots, Appl. Math. Comput., 211, 2009, 474-479.
  10. V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316, 2006, 753-763.
  11. V. I. Hasanov, I. G. Ivanov, G. Nedzhibov, A new modification of Newton method, Appl. Math. Eng., 27, 2002, 278-286.
  12. H. H. H. Homeier, On Newton-type methods for multiple roots with cubic convergence, J. Comput. Appl. Math., 231, 2009, 249-254.
  13. E. Isaacson, H. B. Keller, Analysis of Numerical Methods, John Wiley & Sons, Inc., New York, USA, 1966.
  14. B. Neta, C. Chun, On a family of Laguerre methods to find multiple roots of nonlinear equations, J. Appl. Math. Comput., 219, 2013, 10987-11004.
  15. B. Neta, C. Chun, M. Scott, On a development of iterative methods for multiple roots, J. Appl. Math. Comput., 224, 2013, 358-361.
  16. M. A. Noor, K. H. Noor, Some iterative schemes for nonlinear equations, Appl. Math. Comput., 183, 2006, 774-779.
  17. N. Osada, An optimal multiple root-finding method of order three, J. Comput. Appl. Math., 51, 1994, 131-133.
  18. E. Schröder, Über unendlich viele algorithmen zur auflösung der gleichungen, Math. Annal. 2, 1870, 317-365.
DOI: https://doi.org/10.2478/gm-2023-0009 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 17 - 26
Submitted on: Feb 3, 2023
Accepted on: Jun 10, 2023
Published on: Mar 7, 2024
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Arif Rafiq, Faisal Ali, Ana Maria Acu, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.