Have a personal or library account? Click to login
About uniform continuous functions which are not Lipschitz Cover

About uniform continuous functions which are not Lipschitz

Open Access
|Nov 2023

References

  1. Boiso, M. C., Approximation of Lipschitz functions by convex functions in Banach spaces, Israel Journal of Mathematics, 106,(1998), 269-284.
  2. Cobzaş, S¸., Miculescu, R. and Nicolae, A., Lipschitz Functions, Springer, 2019.
  3. Georganopoulos, G., Sur l’approximation des fonctions continues par des fonctions lipschitziennes, Comptes Rendus de l’Académie des Sciences. Série I. Mathématique, Paris, 264 (1973), 151-163.
  4. Miculescu, R. and Mortici, C., Lipschitz Functions (in Romanian), Editura Academiei Române, Bucureşti, 2004.
  5. Pompeiu, D. Sur les fonctions derivées, Math. Annalen, 63 (1907), 326 - 332.
  6. Rademacher, H.,Über partielle und totale Differenzierbarkeit von Funktionen mehrerer Variablen undüber die Transformation der Doppelintegrale, Mathematische Annales, 79 (1919), 340-359.
DOI: https://doi.org/10.2478/gm-2023-0007 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 67 - 72
Submitted on: Dec 15, 2022
Accepted on: May 12, 2023
Published on: Nov 24, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Gabriel Prăjitură, Andrei Vernescu, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.