References
- J. Ali, M. Imdad, Common fixed points of nonlinear hybrid mappings under strict contractions in semi-metric spaces, Nonlinear Anal. Hybrid Syst., vol. 4, no. 4, 2010, 830-837.
- A. Ali, H. Işık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued Suzuki-type θ-contractions and related applications, Open Math., vol. 18, no. 1, 2020, 386-399.
- A. Aliouche, V. Popa, Coincidence and Common Fixed Point Theorems for Hybrid Mappings, Math. Morav., vol. 12, no. 1, 2008, 1-13.
- A. H. Ansari, Note on φ-ψ-contractive type mappings and related fixed point, The 2nd regional conference on mathematics and applications 2014, PNU 377380.
- A. H. Ansari, N. Saleem, B. Fisher, M. S. Khan, C-class function on Khan type fixed point theorems in generalized metric Space, Filomat, vol. 31, no. 11, 2017, 3483-3494.
- M. A. Imdad, A. Ahmad, S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., vol. 10, no. 2, 2001, 233-244.
- M. Imdad, T. I. Khan, Results on nonlinear hybrid contractions satisfying a rational inequality, Southeast Asian Bull. Math., vol. 26, no. 3, 2003, 421-432.
- M. Imdad, A. Ahmed, Some common fixed point theorems for hybrid pairs of maps without the completeness assumption, Math. Slovaca, vol. 26, no. 2, 2012, 301-314.
- G. Jungck, B. E. Rhoades, Fixed points for set-valued functions without continuity, Indian J. pure appl. Math., vol. 29, no. 3, 1998, 227-238.
- T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl., vol. 299, no. 1, 2004, 253-241.
- M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., vol. 30, no. 1, 1984, 1-9.
- T. Hamaizia, P. P. Murthy, Z-contraction condition involving simulation function in b-metric space under fixed points considerations, Mathematica Moravica, vol. 25, no. 2, 2021, 43-52.
- T. Hamaizia, S. Beloul, Common fixed point result for generalized α- ψ-contraction for C-class functions in b-metric spaces, Annals of Communications in Mathematics, vol. 4, no. 2, 2021, 155-163.
- T. Hamaizia, A. H. Ansari, Common fixed point theorems involving C-class functions in G-metric spaces, Facta universitatis, Ser. Math. Inform., vol. 37, no. 5, 2022.
- S. B. Nadler, Multi-valued contractions mappings, Pacific J. Math., vol. 30, no. 2, 1969, 475-488.
- R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., vol. 188, 1994, 436-440.
- H. K. Pathak, Rodrıguez-Lopez, Noncommutativity of mappings in hybrid fixed point results, Bound. Value Probl., 2013, 145-166, doi:10.1186/1687-2770-2013-145.
- S. Radenović, Z. Kadelburg, D. Jandrlić, A. Jandrlić, Some results on weakly contractive maps, Bull. Iran. Math. Soc, 2012, vol. 38, no. 3, 625-645.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math., (Beograd), vol. 32, no. 46, 1982, 149-153.
- M. Shoaib, M. Sarwar, Multivalued Fixed Point Theorems for Generalized Contractions and Their Applications, J. Math. 2016, Article ID 5190718, doi.org/10.1155/2016/5190718
- S. L. Singh, S. N. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl., 2001, vol. 256, 486-497, doi.org/10.1006/jmaa.2000.7301
- S. L. Singh, A. Hashim, New coincidence and fixed point theorems for strictly contractive hybrid maps, Aust. J. Math. Anal. Appl., vol. 2, no. 1, 2005, 1-7.
- S. L. Singh, S. N. Mishra, Coincidence theorems for certain classes of hybrid contractions, Fixed Point Theory and Applications, 2010, 14 pages, doi:10.1155/2010/898109