References
- M. P. Chen, H. Irmak, H. M. Srivastava, A certain subclass of analytic functions involving operators of fractional calculus, Comput. Math. Appl., vol. 35, no. 5, 1998, 83-91.
- L. Debnath, A brief historical introduction to fractional calculus, Internat. J. Math. Ed. Sci. Tech., vol. 35, no. 4, 2004, 487-501.
- P. L. Duren, Grundlehren der Mathematischen Wissenchaffen, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
- Z. Esa, H. M. Srivastava, A. Kılıçman, R. W. Ibrahim, A novel subclass of analytic functions specified by a family of fractional derivatives in the complex domain, Filomat, vol. 31, no. 9, 2017, 2837-2849.
- G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1990.
- A. W. Goodman, Univalent Functions, Vols. I & II, Mariner, Tampa, Florida, USA, 1983.
- M. Hussain, Application of the Srivastava-Owa Fractional Calculus Operator to Janowski Spiral-like Functions of Complex Order, Punjab. Univ. J. Math., vol. 50, no. 2, 2018, 33-43.
- R. W. Ibrahim, On generalized Srivastava-Owa fractional operators in the unit disk, Adv Differ Equ., vol. 55, no. 2011, 2011.
- R. W. Ibrahim, J. M. Jahangiri, Boundary fractional differential equation in a complex domain, Boundary Value Prob., vol. 2014, 2014, Article ID 66, 1-11.
- H. Irmak, Characterizations of some fractional-order operators in complex domains and their extensive implications to certain analytic functions, Ann. Univ. Craiova Ser. Mat. Inform., vol. 48, no. 2, 2021, 349-357.
- H. Irmak, Certain basic information related to the Tremblay operator and some applications in connection therewith, Gen. Math., vol. 27, no. 2, 2019, 13-21.
- M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad. Ser. A Math. Sci., vol. 68, no. 6, 1992, 152-153.
- K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
- S. Owa, On the distortion theorems. I, Kyungpook Math. J., vol. 18, no. 1, 1978, 53-59.
- C. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.
- S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach: New York, NY, USA, 1993.
- H. M. Srivastava, S. Sümer Eker, S. G. Hamidi, J. M. Jahangiri, Faber Polynomial coefficient estimates for bi-univalent functions defined by Tremblay fractional derivative operator, Bull. Iran. Math. Soc., vol. 44, no. 1, 2018, 149-157.
- H. M. Srivastava, Fractional-order derivatives and integrals: introductory overview and recent developments, Kyungpook Math. J., vol. 60, no. 1, 2020, 73-116.
- R. Tremblay, Une Contribution é la théorie de la dérivée fractionnaire, Ph.D. thesis, Université Laval, Québec, Canada, 1974.
- T. H. Yıldız, Kompleks düzlemde Tremblay operatörü ve bazı analitik fonksiyonlara uygulamaları, Ms. C. thesis, T. C. Çankırı Karatekin University, Çankırı, Turkey, 2023.