Have a personal or library account? Click to login
Various fractional-order type operators and some of their implications to certain normalized functions analytic in the open unit disc Cover

Various fractional-order type operators and some of their implications to certain normalized functions analytic in the open unit disc

By: Hüseyin Irmak  
Open Access
|Nov 2023

References

  1. M. P. Chen, H. Irmak, H. M. Srivastava, A certain subclass of analytic functions involving operators of fractional calculus, Comput. Math. Appl., vol. 35, no. 5, 1998, 83-91.
  2. L. Debnath, A brief historical introduction to fractional calculus, Internat. J. Math. Ed. Sci. Tech., vol. 35, no. 4, 2004, 487-501.
  3. P. L. Duren, Grundlehren der Mathematischen Wissenchaffen, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  4. Z. Esa, H. M. Srivastava, A. Kılıçman, R. W. Ibrahim, A novel subclass of analytic functions specified by a family of fractional derivatives in the complex domain, Filomat, vol. 31, no. 9, 2017, 2837-2849.
  5. G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1990.
  6. A. W. Goodman, Univalent Functions, Vols. I & II, Mariner, Tampa, Florida, USA, 1983.
  7. M. Hussain, Application of the Srivastava-Owa Fractional Calculus Operator to Janowski Spiral-like Functions of Complex Order, Punjab. Univ. J. Math., vol. 50, no. 2, 2018, 33-43.
  8. R. W. Ibrahim, On generalized Srivastava-Owa fractional operators in the unit disk, Adv Differ Equ., vol. 55, no. 2011, 2011.
  9. R. W. Ibrahim, J. M. Jahangiri, Boundary fractional differential equation in a complex domain, Boundary Value Prob., vol. 2014, 2014, Article ID 66, 1-11.
  10. H. Irmak, Characterizations of some fractional-order operators in complex domains and their extensive implications to certain analytic functions, Ann. Univ. Craiova Ser. Mat. Inform., vol. 48, no. 2, 2021, 349-357.
  11. H. Irmak, Certain basic information related to the Tremblay operator and some applications in connection therewith, Gen. Math., vol. 27, no. 2, 2019, 13-21.
  12. M. Nunokawa, On properties of non-Caratheodory functions, Proc. Japan Acad. Ser. A Math. Sci., vol. 68, no. 6, 1992, 152-153.
  13. K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.
  14. S. Owa, On the distortion theorems. I, Kyungpook Math. J., vol. 18, no. 1, 1978, 53-59.
  15. C. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.
  16. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach: New York, NY, USA, 1993.
  17. H. M. Srivastava, S. Sümer Eker, S. G. Hamidi, J. M. Jahangiri, Faber Polynomial coefficient estimates for bi-univalent functions defined by Tremblay fractional derivative operator, Bull. Iran. Math. Soc., vol. 44, no. 1, 2018, 149-157.
  18. H. M. Srivastava, Fractional-order derivatives and integrals: introductory overview and recent developments, Kyungpook Math. J., vol. 60, no. 1, 2020, 73-116.
  19. R. Tremblay, Une Contribution é la théorie de la dérivée fractionnaire, Ph.D. thesis, Université Laval, Québec, Canada, 1974.
  20. T. H. Yıldız, Kompleks düzlemde Tremblay operatörü ve bazı analitik fonksiyonlara uygulamaları, Ms. C. thesis, T. C. Çankırı Karatekin University, Çankırı, Turkey, 2023.
DOI: https://doi.org/10.2478/gm-2023-0002 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 11 - 20
Submitted on: Dec 4, 2021
Accepted on: Jul 9, 2023
Published on: Nov 24, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Hüseyin Irmak, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.