References
- A. O. Akdemir, M. Tunc, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv: 1212.1584v1[math.FA] 7 Dec 2012.
- T. Antczak, r-preinvexity and r-invexity in mathematical programming, Comput. Math. Appl., vol. 50, no. 3-4, 2005, 551-566.
- M. Avriel, r-convex functions, Math. Programming, vol. 2, 1972, 309-323.
- A. Ben-Israel, B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B, vol. 28, no. 1, 1986, 1-9.
- W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, (German) Publ. Inst. Math. (Beograd) (N.S.), vol. 23, no. 37, 1978, 13-20.
- S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, ONLINE: http://rgmia.vu.edu.au/monographs, 2000.
- S. S. Dragomir, J. E. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., vol. 21, no. 3, 1995, 335-341.
- S. S. Dragomir, S. Fitzpatrik, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., vol. 32, no. 4, 1999, 687-696.
- S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, vol. 34, no. 4, 2015, 323-341.
- S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Armen. J. Math., vol. 8, no. 1, 2016, 38-57.
- L. Fejér,Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., vol. 24, 1906, 369-390.
- E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, (Russian) Numerical mathematics and mathematical physics (Russian), vol. 166, Moskov. Gos. Ped. Inst., Moscow, 1985, 138-142.
- J. Hadamard, Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., vol. 58, 1893, 171-215.
- M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., vol. 80, no. 2, 1981, 545-550.
- U. S. Kirmaci, M. K. Bakula, M. E.Özdemir, J. E. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., vol. 193, no. 1, 2007, 26-35.
- H. Le Van, V. V. Nguyen, On some Hadamard-type inequalities for (h, r)-convex functions, Int. J. Math. Anal. (Ruse), vol. 7, no. 41-44, 2013, 2067-2075.
- J.-Y. Li, On Hadamard-type inequalities for s-preinvex functions, J. Chongqing Norm. Univ. (Natural Science) China, vol. 27, no. 4, 2010, 5-8.
- M. Matloka, Inequalities for h-preinvex functions, Appl. Math. Comput., vol. 234, 2014, 52-57.
- D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
- S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., vol. 189, no. 3, 1995, 901-908.
- N. P. G. Ngoc, N. V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions, Int. Math. Forum, vol. 4, no. 33-36, 2009, 1723-1728.
- M. A. Noor, On some characterizations of nonconvex functions. Nonlinear Anal. Forum, vol. 12, no. 2, 2007, 193-201.
- M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, vol. 28, no. 7, 2014, 1463-1474.
- M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci., vol. 8, no. 6, 2014, 2865-2872.
- M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis (Berlin) vol. 33, no. 4, 2013, 367-375.
- M. A. Noor, Variational-like inequalities, Optimization, vol. 30, no. 4, 1994, 323-330.
- M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., vol. 302, no. 2, 2005, 463-475.
- M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova-Levin preinvex functions, J. Adv. Math. Stud., vol. 7, no. 2, 2014, 12-19.
- M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, vol. 2, no. 2, 2007, 126-131.
- M. A. Noor, K. I. Noor, M. U. Awan, F. Qi, Integral inequalities of Hermite-Hadamard type for logarithmically h-preinvex functions, Cogent Math., vol. 2, 2015, Art. ID 1035856, 10 pp.
- M. E.Özdemir, M.Tunç, M. Gürbüz, Definitions of h-logaritmic, h-geometric and h-multi convex functions and some inequalities related to them, available online athttp://arxiv.org/abs/1211.2750.
- B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll, vol. 6, no. 1, 2003, 1-9.
- J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s, r)-convex mappings in the first sense, Int. J. Pure Appl. Math., vol. 74, no. 2, 2012, 251-263.
- C. E. M. Pearce, J. Pečarić, V.Šimić, Stolarsky means and Hadamard’s inequality, J. Math. Anal. Appl., vol. 220, no. 1, 1998, 99-109.
- J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187, Academic Press, Inc., Boston, MA, 1992.
- R. Pini, Invexity and generalized convexity, Optimization, vol. 22, no. 4, 1991, 513-525.
- A. Saglam, H. Yildirim, M. Z. Sarikaya, Some new inequalities of Hermite-Hadamard’s type, Kyungpook Math. J., vol. 50, no. 3, 2010, 399-410.
- M. Z. Sarikaya, A. Saglam, H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., vol. 2, no. 3, 2008, 335-341.
- M. Z. Sarikaya, E. Set, M. E.Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), vol. 79, no. 2, 2010, 265-272.
- W. Ul-Haq, J. Iqbal, Hermite-Hadamard-type inequalities for r-preinvex functions, J. Appl. Math., 2013, Art. ID 126457, 5 pp.
- S. Varošanec, On h-convexity, J. Math. Anal. Appl., vol. 326, no. 1, 2007, 303-311.
- Y. Wang, S.-H. Wang, F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex, Facta Univ. Ser. Math. Inform., vol. 28, no. 2, 2013, 151-159.
- S. Wang, X. Liu, New Hermite-Hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions, Abstr. Appl. Anal., 2014, Art. ID 725987, 11 pp.
- T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., vol. 136, no. 1, 1988, 29-38.
- B.-Y. Xi, S.-H. Wang, F. Qi, Properties and inequalities for the h- and (h, m)-logarithmically convex functions, Creat. Math. Inform., vol. 23, no. 1, 2014, 123-130.
- X. -M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., vol. 256, no. 1, 2001, 229-241.