Have a personal or library account? Click to login
Hermite-Hadamard’s inequalities for (h, r)-preinvex functions Cover

Hermite-Hadamard’s inequalities for (h, r)-preinvex functions

Open Access
|Nov 2023

References

  1. A. O. Akdemir, M. Tunc, On some integral inequalities for s-logarithmically convex functions and their applications, arXiv: 1212.1584v1[math.FA] 7 Dec 2012.
  2. T. Antczak, r-preinvexity and r-invexity in mathematical programming, Comput. Math. Appl., vol. 50, no. 3-4, 2005, 551-566.
  3. M. Avriel, r-convex functions, Math. Programming, vol. 2, 1972, 309-323.
  4. A. Ben-Israel, B. Mond, What is invexity?, J. Austral. Math. Soc. Ser. B, vol. 28, no. 1, 1986, 1-9.
  5. W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, (German) Publ. Inst. Math. (Beograd) (N.S.), vol. 23, no. 37, 1978, 13-20.
  6. S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, ONLINE: http://rgmia.vu.edu.au/monographs, 2000.
  7. S. S. Dragomir, J. E. Pečarić, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., vol. 21, no. 3, 1995, 335-341.
  8. S. S. Dragomir, S. Fitzpatrik, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., vol. 32, no. 4, 1999, 687-696.
  9. S. S. Dragomir, Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones, vol. 34, no. 4, 2015, 323-341.
  10. S. S. Dragomir, n-points inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Armen. J. Math., vol. 8, no. 1, 2016, 38-57.
  11. L. Fejér,Über die Fourierreihen, II, Math. Naturwiss. Anz Ungar. Akad. Wiss., vol. 24, 1906, 369-390.
  12. E. K. Godunova, V. I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, (Russian) Numerical mathematics and mathematical physics (Russian), vol. 166, Moskov. Gos. Ped. Inst., Moscow, 1985, 138-142.
  13. J. Hadamard, Etude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl., vol. 58, 1893, 171-215.
  14. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., vol. 80, no. 2, 1981, 545-550.
  15. U. S. Kirmaci, M. K. Bakula, M. E.Özdemir, J. E. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., vol. 193, no. 1, 2007, 26-35.
  16. H. Le Van, V. V. Nguyen, On some Hadamard-type inequalities for (h, r)-convex functions, Int. J. Math. Anal. (Ruse), vol. 7, no. 41-44, 2013, 2067-2075.
  17. J.-Y. Li, On Hadamard-type inequalities for s-preinvex functions, J. Chongqing Norm. Univ. (Natural Science) China, vol. 27, no. 4, 2010, 5-8.
  18. M. Matloka, Inequalities for h-preinvex functions, Appl. Math. Comput., vol. 234, 2014, 52-57.
  19. D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Mathematics and its Applications (East European Series), 61, Kluwer Academic Publishers Group, Dordrecht, 1993.
  20. S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., vol. 189, no. 3, 1995, 901-908.
  21. N. P. G. Ngoc, N. V. Vinh, P. T. T. Hien, Integral inequalities of Hadamard type for r-convex functions, Int. Math. Forum, vol. 4, no. 33-36, 2009, 1723-1728.
  22. M. A. Noor, On some characterizations of nonconvex functions. Nonlinear Anal. Forum, vol. 12, no. 2, 2007, 193-201.
  23. M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, vol. 28, no. 7, 2014, 1463-1474.
  24. M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inf. Sci., vol. 8, no. 6, 2014, 2865-2872.
  25. M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex functions, Analysis (Berlin) vol. 33, no. 4, 2013, 367-375.
  26. M. A. Noor, Variational-like inequalities, Optimization, vol. 30, no. 4, 1994, 323-330.
  27. M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., vol. 302, no. 2, 2005, 463-475.
  28. M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Hermite-Hadamard inequalities for s-Godunova-Levin preinvex functions, J. Adv. Math. Stud., vol. 7, no. 2, 2014, 12-19.
  29. M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, vol. 2, no. 2, 2007, 126-131.
  30. M. A. Noor, K. I. Noor, M. U. Awan, F. Qi, Integral inequalities of Hermite-Hadamard type for logarithmically h-preinvex functions, Cogent Math., vol. 2, 2015, Art. ID 1035856, 10 pp.
  31. M. E.Özdemir, M.Tunç, M. Gürbüz, Definitions of h-logaritmic, h-geometric and h-multi convex functions and some inequalities related to them, available online athttp://arxiv.org/abs/1211.2750.
  32. B. G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll, vol. 6, no. 1, 2003, 1-9.
  33. J. Park, On the Hermite-Hadamard-like type inequalities for co-ordinated (s, r)-convex mappings in the first sense, Int. J. Pure Appl. Math., vol. 74, no. 2, 2012, 251-263.
  34. C. E. M. Pearce, J. Pečarić, V.Šimić, Stolarsky means and Hadamard’s inequality, J. Math. Anal. Appl., vol. 220, no. 1, 1998, 99-109.
  35. J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in Science and Engineering, 187, Academic Press, Inc., Boston, MA, 1992.
  36. R. Pini, Invexity and generalized convexity, Optimization, vol. 22, no. 4, 1991, 513-525.
  37. A. Saglam, H. Yildirim, M. Z. Sarikaya, Some new inequalities of Hermite-Hadamard’s type, Kyungpook Math. J., vol. 50, no. 3, 2010, 399-410.
  38. M. Z. Sarikaya, A. Saglam, H. Yıldırım, On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., vol. 2, no. 3, 2008, 335-341.
  39. M. Z. Sarikaya, E. Set, M. E.Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), vol. 79, no. 2, 2010, 265-272.
  40. W. Ul-Haq, J. Iqbal, Hermite-Hadamard-type inequalities for r-preinvex functions, J. Appl. Math., 2013, Art. ID 126457, 5 pp.
  41. S. Varošanec, On h-convexity, J. Math. Anal. Appl., vol. 326, no. 1, 2007, 303-311.
  42. Y. Wang, S.-H. Wang, F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex, Facta Univ. Ser. Math. Inform., vol. 28, no. 2, 2013, 151-159.
  43. S. Wang, X. Liu, New Hermite-Hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions, Abstr. Appl. Anal., 2014, Art. ID 725987, 11 pp.
  44. T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., vol. 136, no. 1, 1988, 29-38.
  45. B.-Y. Xi, S.-H. Wang, F. Qi, Properties and inequalities for the h- and (h, m)-logarithmically convex functions, Creat. Math. Inform., vol. 23, no. 1, 2014, 123-130.
  46. X. -M. Yang, D. Li, On properties of preinvex functions, J. Math. Anal. Appl., vol. 256, no. 1, 2001, 229-241.
DOI: https://doi.org/10.2478/gm-2022-0003 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 33 - 54
Submitted on: Jul 14, 2020
|
Accepted on: May 23, 2022
|
Published on: Nov 24, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Badreddine Meftah, Abdourazek Souahi, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.