Have a personal or library account? Click to login
Some Properties of a Family of Univalent Functions Defined by a Generalized Opoola Differential Operator Cover

Some Properties of a Family of Univalent Functions Defined by a Generalized Opoola Differential Operator

Open Access
|Nov 2023

References

  1. E. A. Adwan, M. K. Aouf, Subordination results for a certain class of analytic functions defined by the Salagean type q-difference operator, Quaestiones Mathematicae, vol. 44, no. 1, 2021, 89-97. https://doi.org/10.2989/16073606.2019.1672113
  2. F. M. Al-Oboudi, On univalent functions defined by a generalised Sǎlǎgean operator, International Journal of Mathematics and Mathematical Science, vol. 2004, Article ID 172525, 2004, 1429-1436. https://doi.org/10.1155/S0161171204108090
  3. A. Aral, V. Gupta, R. P. Agarwal, Applications of q-Calculus in Operator Theory, Springer Science+Business Media, New York, 2013. https://doi.org/10.1007/978-1-4614-6946-9_1
  4. K. O. Babalola, T. O. Opoola, Iterated integral transforms of Carathéodory functions and their applications to analytic and univalent functions, Tankang Journal of Mathematics, vol. 135, no. 51, 2006, 429-446. https://doi.org/10.5556/j.tkjm.37.2006.149
  5. A. W. Goodman, Univalent functions and nonanalytic curves, Proceedings of the American Mathematical Society, vol. 8, 1957, 598-601. https://doi.org/10.1090/S0002-9939-1957-0086879-9
  6. A. W. Goodman, Univalent Functions, Mariner Publishing Company Inc., Tampa, Florida, vol. I, 1983.
  7. F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, vol. 46, no. 2, 1908, 64-72. https://doi.org/10.1017/S0080456800002751
  8. V. Kac, P. Cheung, Quantum Calculus, Springer-Verlag Inc., New York, 2002. https://doi.org/10.1007/978-1-4613-0071-7
  9. T. H. MacGregor, Functions whose derivative has positive real part, Transactions of the American Mathematical Society, vol. 104, no. 3, 1962, 532-537. https://doi.org/10.1090/S0002-9947-1962-0140674-7
  10. T. O. Opoola, On a subclass of univalent functions defined by a generalised differential operator, International Journal of Mathematical Analysis, vol. 11, no. 18, 2017, 869-876. https://doi.org/10.12988/ijma.2017.7232
  11. S. Ruscheweyh, Neighborhoods of univalent functions, Proceedings of the American Mathematical Society, vol. 81, 1981, 521-527. https://doi.org/10.1090/S0002-9939-1981-0601721-6
  12. G. S. Sǎlǎgean, Subclasses of univalent functions, Lecture Notes in Mathematics, vol. 1013, 1983, 362-372. https://doi.org/10.1007/BFb0066543
  13. P. D. Tuan, V. V. Anh, Radii of starlikeness and convexity for certain classes of analytic functions, Journal of Mathematical Analysis and Applications, vol. 64, no. 1, 1978, 146-158. https://doi.org/10.1016/0022-247X(78)90027-6
DOI: https://doi.org/10.2478/gm-2022-0001 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 3 - 13
Submitted on: Apr 10, 2021
Accepted on: Jun 19, 2022
Published on: Nov 24, 2023
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ayotunde Olajide Lasode, Timothy Oloyede Opoola, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.