Have a personal or library account? Click to login
The Fekete-Szego Theorem for Close-to-convex Functions Associated with The Koebe Type Function Cover

The Fekete-Szego Theorem for Close-to-convex Functions Associated with The Koebe Type Function

Open Access
|Mar 2022

References

  1. [1] A. L. P. Hern, A. Janteng, R. Omar, Hankel Determinant H2(3) for Certain Subclasses of Univalent Functions, Mathematics and Statistics, vol. 8, no. 5, 2020, 566-569.10.13189/ms.2020.080510
  2. [2] B. Kowalczyk, A. Lecko, The Fekete-Szegö inequality for close-to-convex functions with respect to a certain starlike function dependent on a real parameter, Journal of Inequalities and Applications, 2014.10.1186/1029-242X-2014-65
  3. [3] C. Pommerenke, Univalent functions, Gottingen: Vandenhoeck and Ruprecht, 1975.
  4. [4] D. Mohamad, On a class of function whose derivative maps the unit disc into a half plane, Bulletin of Malaysian Mathematical Sciences Society, vol. 23, 2001, 163-171.
  5. [5] E. Deniz, M. Caglar, H. Orhan, Second Hankel determinant for bi-starlike and bi-convex functions of order beta, Appl. Math. Comput., vol. 271, 2015, 301-307.10.1016/j.amc.2015.09.010
  6. [6] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proceeding of the American Mathematical Society, vol. 20, no. 1, 1969, 8-12.10.1090/S0002-9939-1969-0232926-9
  7. [7] G. M. Goluzin, Some questions in the theory of univalent functions, Trudy Mat. Inst. Steklova, vol. 27, 1949, 1-112.
  8. [8] H. Arıkan, H. Orhan, M. C. Aglar, Fekete-Szego inequality for a subclass of analytic functions defined by Komatu integral operator, AIMS Mathematics, vol. 5, no. 3, 2020, 1745-1756.10.3934/math.2020118
  9. [9] H. Silverman, E. M. Silvia, On α-close-to-convex Functions, Publicationes Mathematicae Debrecen, 49, 1996, 532-537.10.5486/PMD.1996.1716
  10. [10] J. A. Jenkins, On certain coefficients of univalent functions, Analytic Functions, Princeton Univ. Press, 1960, 159-194.10.1515/9781400876709-009
  11. [11] J. Noonan, D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Transactions of the American Mathematical Society, vol. 223, 1976, 337-346.10.1090/S0002-9947-1976-0422607-9
  12. [12] M. Darus, The Fekete-Szego problem for close-to-convex functions of the class Ksh (α, δ), Acta Mathematica Academiae Paedagogicae, 2002.
  13. [13] M. Fekete, G. Szego, Eine Bemerkung uber ungerade schlichte funktionen, J. Londan Math. Soc., vol. 8, 1933, 85-89.10.1112/jlms/s1-8.2.85
  14. [14] P. Zaprawa, On Hankel determinant H2(??) for univalent functions, Results Math, vol. 73, no. 89, 2018.10.1007/s00025-018-0854-1
  15. [15] R. J. Libera, E. J. Zlotkiewicz, Coefficient bound for the inverse of a function with derivative in positive real part, Proceeding of the American Mathematical Society, vol. 87, no. 2, 1983, 251-257.10.2307/2043698
  16. [16] R. J. Libera, E. J. Zlotkiewicz, Early coefficient of the inverse of a regular convex function, Proceeding of the American Mathematical Society, vol. 85, no. 2, 1982, 225-230.10.1090/S0002-9939-1982-0652447-5
  17. [17] R. M. Goel, B. S, Mehrok, A subclass of univalent function, Journal of the Australian Mathematical Society, 35, 1983, 1-17.10.1017/S1446788700024733
  18. [18] R. R. London, Fekete-Szego inequalities for close-to-convex functions, Proceedings of the American Mathematical Society, vol. 117, no. 4, 1993, 947-950.10.2307/2159520
  19. [19] S. Altinkaya, S. Yalcin, The Feketa-Szego problem for a general class of biunivalent functions satisfying subordinate conditions, Sahand Communications in Mathematical Analysis, vol. 5, no. 1, 2017, 1-7.
  20. [20] T. Hayami, S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., vol. 4, no. 52, 2010, 2573-2585.
  21. [21] T. H. MacGregor, Function whose derivative has a positive real part, Transactions of the American Mathematical Society, 104, 1962, 532-537.10.1090/S0002-9947-1962-0140674-7
  22. [22] W. Kaplan, Close-to-convex schlicht functions, Michigan Mathematical Journal, vol. 1, no. 2, 1952, 169-185.10.1307/mmj/1028988895
  23. [23] W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proceeding of the American Mathematical Society, vol. 101, no. 1, 1987, 89-95.10.1090/S0002-9939-1987-0897076-8
DOI: https://doi.org/10.2478/gm-2021-0019 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 127 - 136
Submitted on: Oct 30, 2021
Accepted on: Nov 25, 2021
Published on: Mar 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Sidik Rathi, Shaharuddin Cik Soh, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.