References
- [1] Y. Abu Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Comp. Var and Ell.Eqns., vol. 55, no. 11, 2010, 1071-1078.10.1080/17476931003628190
- [2] Y. Abu Muhanna, R. M. Ali, Z. C. Ng, S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Applns., vol. 420, 2014, 124-136.10.1016/j.jmaa.2014.05.076
- [3] Y. Abu Muhanna, R. M. Ali, Bohr phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl., vol. 379, 2011, 512-517.10.1016/j.jmaa.2011.01.023
- [4] J. Clunie, T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A.I., vol. 9, 1984, 3-25.10.5186/aasfm.1984.0905
- [5] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.10.1017/CBO9780511546600
- [6] H. Bohr, A theorem concerning power series, Proc.Lond. Math. Soc. s2-13, 1914, 1-5.10.1112/plms/s2-13.1.1
- [7] I. R. Kayumov, S. Ponnusamy, Improved version of Bohr’s inequality, C. R. Acad. Sci. Paris, I, vol. 356, 2018, 272-277.10.1016/j.crma.2018.01.010
- [8] H. Lewy, On the vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., vol. 42, 1936, 689-710.10.1090/S0002-9904-1936-06397-4
- [9] M. B. Ahamed, V. Allu, H. Halder, Bohr Radius for Certain Close-to-Convex Harmonic Mappings, Anal. and Math.Phy., vol. 11, no.3, 2021, 1-30.10.1007/s13324-021-00551-y
- [10] S. Ponnusamy, R. Vijayakumar, K. J. Wirths, New inequalities for the coefficients f unimodular bounded functions, Res. in Math., vol. 75, no. 3, 2020, 1-11.10.1007/s00025-020-01240-1
- [11] T. Rosy, B. A. Stephen, K. G. Subramanian, J. M.Jahangiri, Goodman-Ronning - Type Harmonic Univalent Functions, Kyungpook Mathematical Journal, vol. 41, no. 1, 2001, 45-54.
- [12] V. Allu, H. Halder, Bohr Phenomenon for Certain Subclasses of Harmonic Mappings, Bull. des. Sci. Math., vol. 173, 2021, Article 103053.10.1016/j.bulsci.2021.103053