Have a personal or library account? Click to login
Bohr Radius for Goodman-Ronning Type Harmonic Univalent Functions Cover

Bohr Radius for Goodman-Ronning Type Harmonic Univalent Functions

By: S. Sunil Varma and  Thomas Rosy  
Open Access
|Mar 2022

References

  1. [1] Y. Abu Muhanna, Bohr’s phenomenon in subordination and bounded harmonic classes, Comp. Var and Ell.Eqns., vol. 55, no. 11, 2010, 1071-1078.10.1080/17476931003628190
  2. [2] Y. Abu Muhanna, R. M. Ali, Z. C. Ng, S. F. M. Hasni, Bohr radius for subordinating families of analytic functions and bounded harmonic mappings, J. Math. Anal. Applns., vol. 420, 2014, 124-136.10.1016/j.jmaa.2014.05.076
  3. [3] Y. Abu Muhanna, R. M. Ali, Bohr phenomenon for analytic functions into the exterior of a compact convex body, J. Math. Anal. Appl., vol. 379, 2011, 512-517.10.1016/j.jmaa.2011.01.023
  4. [4] J. Clunie, T. Sheil-Small, Harmonic Univalent Functions, Ann. Acad. Sci. Fenn. Ser. A.I., vol. 9, 1984, 3-25.10.5186/aasfm.1984.0905
  5. [5] P. L. Duren, Harmonic Mappings in the Plane, Cambridge University Press, 2004.10.1017/CBO9780511546600
  6. [6] H. Bohr, A theorem concerning power series, Proc.Lond. Math. Soc. s2-13, 1914, 1-5.10.1112/plms/s2-13.1.1
  7. [7] I. R. Kayumov, S. Ponnusamy, Improved version of Bohr’s inequality, C. R. Acad. Sci. Paris, I, vol. 356, 2018, 272-277.10.1016/j.crma.2018.01.010
  8. [8] H. Lewy, On the vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc., vol. 42, 1936, 689-710.10.1090/S0002-9904-1936-06397-4
  9. [9] M. B. Ahamed, V. Allu, H. Halder, Bohr Radius for Certain Close-to-Convex Harmonic Mappings, Anal. and Math.Phy., vol. 11, no.3, 2021, 1-30.10.1007/s13324-021-00551-y
  10. [10] S. Ponnusamy, R. Vijayakumar, K. J. Wirths, New inequalities for the coefficients f unimodular bounded functions, Res. in Math., vol. 75, no. 3, 2020, 1-11.10.1007/s00025-020-01240-1
  11. [11] T. Rosy, B. A. Stephen, K. G. Subramanian, J. M.Jahangiri, Goodman-Ronning - Type Harmonic Univalent Functions, Kyungpook Mathematical Journal, vol. 41, no. 1, 2001, 45-54.
  12. [12] V. Allu, H. Halder, Bohr Phenomenon for Certain Subclasses of Harmonic Mappings, Bull. des. Sci. Math., vol. 173, 2021, Article 103053.10.1016/j.bulsci.2021.103053
DOI: https://doi.org/10.2478/gm-2021-0018 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 107 - 126
Submitted on: Oct 31, 2021
Accepted on: Nov 26, 2021
Published on: Mar 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 S. Sunil Varma, Thomas Rosy, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.