Have a personal or library account? Click to login
New Subclasses of Bi-Univalent Functions based on the Fibonacci Numbers Cover

New Subclasses of Bi-Univalent Functions based on the Fibonacci Numbers

Open Access
|Mar 2022

References

  1. [1] F. M. Al-Oboudi. On univalent functions defined by a generalized Sălăgean operator. International Journal of Mathematics and Mathematical Sciences, 2004(27):1429–1436, 2004.10.1155/S0161171204108090
  2. [2] Ş. Altinkaya. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. Turkish Journal Of Mathematics, 44:553–560, 2020.
  3. [3] Ş. Altinkaya and S. Yalçin. Some applications of generalized Srivastava-Attiya operator to the bi-concave functions. Miskolc Mathematical Notes, 21(1):51, 2020.10.18514/MMN.2020.2947
  4. [4] Ş. Altınkaya, S. Yalçın, and S. Çakmak. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics, 7(2):160, February 2019.10.3390/math7020160
  5. [5] K. M. Ball. Strange curves, counting rabbits, and other mathematical explorations. Princeton University Press, Princeton, N.J, 3rd printing, and first paperback printing edition, 2007.
  6. [6] D.A. Brannan and T.S. Taha. On Some Classes Of Bi-Univalent Functions. In Mathematical Analysis and its Applications, pages 53–60. Elsevier, 1988.10.1016/B978-0-08-031636-9.50012-7
  7. [7] S. Bulut. Some Properties For An Integral Operator Defined By Al-Oboudi Differential Operator. Journal of Inequalities in Pure and Applied Mathematics, 9(4):115, 5, 2008.10.1155/2008/957042
  8. [8] S. Bulut. A New General Integral Operator Defined by Al-Oboudi Differential Operator. Journal of Inequalities and Applications, 2009(1):158408, 2009.10.1155/2009/158408
  9. [9] P. L. Duren. Univalent functions. Number 259 in Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, 1983.
  10. [10] J. Dziok, R. K. Raina, and J. Sokół. On alpha-convex functions related to shell-like functions connected with Fibonacci numbers. Applied Mathematics and Computation, 218(3):996–1002, 2011.10.1016/j.amc.2011.01.059
  11. [11] S. S. Eker and S. Owa. New Applications of classes of analytic functions involving the Salagean operator. In Proceedings Of The International Symposium On Complex Function Theory And Applications, pages 21–34, 2006.
  12. [12] S. S. Eker and B. Seker. On a class of multivalent functions defined by Salagean operator. General Mathematics, 15:154–163, 2007.
  13. [13] F. W. Gehring. Aspects Of Contemporary Complex Analysis Proceedings of an instructional conference organized by the London Mathematical Society at the University of Durham, July 1979. Bulletin of the London Mathematical Society, 14(4):382–383, July 1982.10.1112/blms/14.4.382
  14. [14] H.Ö. Güney, G. Murugusundaramoorthy, and J. Sokół. Subclasses of biunivalent functions related to shell-like curves connected with Fibonacci numbers. Acta Universitatis Sapientiae, Mathematica, 10(1):70–84, 2018.10.2478/ausm-2018-0006
  15. [15] H.Ö. Güney, G. Murugusundaramoorthy, and J. Sokół. Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 68(2):1909–1921, July 2019.10.31801/cfsuasmas.505287
  16. [16] P. Koebe. Über die Uniformisierung beliebiger analytischer Kurven, (1907), 191-210. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pages 191–210, 1907.
  17. [17] M Lewin. On a coefficients problem of bi-univalent functions. Proceedings of the American Mathematical Society, 18:63–68, 1967.10.1090/S0002-9939-1967-0206255-1
  18. [18] P. Lokesh and B. S. Keerthi. Fekete–Szego Problem for Sakaguchi kind of Functions Related to Shell–like Curves Connected with Fibonacci Numbers. International Journal of Innovative Technology and Exploring Engineering, 8(10S):222–226, 2019.10.35940/ijitee.J1038.08810S19
  19. [19] N. Magesh, C. Abirami, and S. Altinkaya. Initial Bounds For Certain Classes Of Bi-Univalent Functions Defined By The (p,q)-Lucas Polynomials. Journal of Applied and Engineering Mathematics, 11(1):282+, 2021.10.1155/2020/7391058
  20. [20] N. Magesh, J. Nirmala, and J. Yamini. Initial estimates for certain subclasses of bi-univalent functions with k-Fibonacci numbers. arXiv:2001.08569 [math], January 2020. arXiv: 2001.08569.
  21. [21] S. S. Miller and P. Mocanu. Differential Subordinations: Theory and Applications. Number 225 in Monographs and textbooks in pure and applied mathematics. M. Dekker, New York, 2000.10.1201/9781482289817
  22. [22] G. Murugusundaramoorthy, K. Vijaya, and H. Ö Güney. On $\lambda$-Pseudo Bi-Starlike Functions with Respect to Symmetric Points Associated to Shell-Like Curves. Kragujevac Journal of Mathematics, 45(01):103–114, 2021.10.46793/KgJMat2101.103M
  23. [23] E. Netanyahu. The Minimal Distance of the Image Boundary from the Origin and the Second Coefficient of a Univalent Function in Iz|<1. Archive for Rational Mechanics and Analysis, 32(2):100–112, 1969.10.1007/BF00247676
  24. [24] S. O. Olatunji and H. Dutta. Sigmoid Function in the Space of Univalent Lambda-Pseudo-(p,q)-Derivative Operators Related to Shell-Like Curves Connected with Fibonacci Numbers of Sakaguchi Type Functions. Malaysian Journal Of Mathematical Sciences, 13(1):95–106, 2019.10.1155/2019/7628083
  25. [25] H. Orhan, N. Magesh, and C. Abirami. Feketo-Szegö problem for Bi-Bazilevic functions related to shell-like curves. AIMS Mathematics, 5(5):4412–4423, 2020.10.3934/math.2020281
  26. [26] S. Ruscheweyh. New Criteria For Univalent Functions. Proceedings of the American Mathematical Society, 49(1):109–115, May 1975.10.1090/S0002-9939-1975-0367176-1
  27. [27] F. M. Sakar, H.Ö. Güney, and M. Kamali. A New Generalized Al-Oboudi Differential Operator Defined By Wright’s Generalized Hypergeometric Functions. Acta Universitatis Apulensis, 31:293–306, 2012.
  28. [28] T. G. Shaba, M. G. Khan, and B. Ahmad. Coefficients Bounds for Certain New Subclasses of Meromorphic Bi-univalent Functions Associated with Al-Oboudi Differential Operator. Palestine Journal of Mathematics, 9(2), 2020. Publisher: Unpublished.
  29. [29] T. G. Shaba, A. T. Tiamiyu, I. O. Ibrahim, and A. A. Ibrahim. Subclass of p-valent Function with Negative Coefficients Applying Generalized Al-Oboudi Differential Operator. Earthline Journal of Mathematical Sciences, 6(1):87–103, 2021.10.34198/ejms.6121.87103
  30. [30] G. Singh, G. Singh, and G. Singh. A Subclass of Bi-Univalent Functions Defined by Generalized Sălăgean Operator Related to Shell-Like Curves Connected with Fibonacci Numbers. International Journal of Mathematics and Mathematical Sciences, 2019:7 : Article ID 7628083, 2019.10.1155/2019/7628083
  31. [31] G. Singh, G. Singh, and G. Singh. Certain subclasses of univalent and biunivalent functions related to shell-like curves connected with Fibonacci numbers. General Mathematics, 28(1):125–140, June 2020.10.2478/gm-2020-0010
  32. [32] G. S. Sălăgean. Subclasses of univalent functions. In Cabiria Andreian Cazacu, Nicu Boboc, Martin Jurchescu, and Ion Suciu, editors, Complex Analysis — Fifth Romanian-Finnish Seminar, volume 1013, pages 362–372. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. Series Title: Lecture Notes in Mathematics.
  33. [33] J. Sokól. On starlike functions connected with Fibonacci numbers. Folia scientiarum Universitatis Technicae Resoviensis, 175:111–116, 1999.
  34. [34] H.M. Srivastava, A.K. Mishra, and P. Gochhayat. Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23(10):1188–1192, 2010.10.1016/j.aml.2010.05.009
  35. [35] P. Sumalatha, R. B. Sharma, and M. H. Priya. The third Hankel determinant for starlike functions with respect to symmetric points subordinate to k-Fibonacci sequence. AIP Conference Proceedings, 2112:020069, 2019.10.1063/1.5112254
  36. [36] D. M. Thirucheran and T. Stalin. On a New Subclass of Multivalent Functions Defined by Al-Oboudi Differential Operator. Global Journal of Pure and Applied Mathematics, 14(5):733–741, 2018.
DOI: https://doi.org/10.2478/gm-2021-0016 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 83 - 97
Submitted on: Oct 24, 2021
Accepted on: Nov 23, 2021
Published on: Mar 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Munirah Rossdy, Rashidah Omar, Shaharuddin Cik Soh, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.