References
- [1] G. A. Afrouzi, S. Shakeri, S. H. Rasouli, On the fuzzy metric spaces, TJMCS, vol. 2, no. 3, 2011, 475-482.10.22436/jmcs.02.03.11
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, no. 1, 1986, 87-96.10.1016/S0165-0114(86)80034-3
- [3] K. T. Atanassov, Intuitionistic fuzzy sets past, present, and future, CLBME-Bulgarian Academy of Science, Sofia, 2003.
- [4] K. T. Atanassov, Type-1 Fuzzy Sets and Intuitionistic Fuzzy Sets, Algorithms, vol. 10, no. 3, 2017, 12 pages.10.3390/a10030106
- [5] M. F. Barnsley, Fractals everywhere, Academic Press Professional, Boston, 1993.
- [6] M. F. Barnsley, A. Vince, Real projective iterated function systems, J. Geom. Anal., vol. 22, no. 4, 2011, 1137-1172.10.1007/s12220-011-9232-x
- [7] Y. Cherruault, G. Mora, Optimisation Globale. Théorie des Courbes α-denses, Económica, Paris, 2005.
- [8] I. Chiţescu, R. Miculescu, Approximation of fractals generated by Fredholm integral equations, J. Comput. Appl. Math., vol. 11, 2009, 286-293.
- [9] E. De Amo, et al., A new approximation procedure for fractals, J. Comput. Appl. Math., vol. 151, no. 2, 2003, 355-370.10.1016/S0377-0427(02)00752-5
- [10] A. Deb Ray, P. K. Saha, Fixed points theorems on generalized fuzzy metric spaces, Hacettepe Journal of Mathematics and Statistics, vol. 39, no. 1, 2010, 1-9.
- [11] S. Dubuc, A. Elqortobi, Approximations of fractal sets, J. Comput. Appl. Math., vol. 29, no. 1, 1990, 79-89.10.1016/0377-0427(90)90197-8
- [12] D. Dumitru, Attractors of infinite iterated function systems containing contraction type functions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Mat. (N.S.), LIX, 2013.10.2478/v10157-012-0044-5
- [13] H. Efe, C. Yildiz, On the Hausdorff intuitionistic fuzzy metric on compact sets, Int. J. of Pure and App. Math., vol. 31, no. 2, 2006, 143-155.
- [14] G. García, Interpolation of bounded sequences by α-dense curves, J. Interpolat. Approx. Sci. Comput., vol. 1, 2017, 1-9.10.5899/2017/jiasc-00108
- [15] G. García, Approximating the attractor set of countable iterated function systems by α-dense curves, Mediterr. J. Math., vol. 14, 67, 2017.10.1007/s00009-017-0845-6
- [16] G. García, Approximating the attractor set of iterated function systems of order m by α-dense curves, Mediterr. J. Math., vol. 17, 5, 2020.10.1007/s00009-020-01585-5
- [17] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, vol. 64, no. 3, 1994, 395-399.10.1016/0165-0114(94)90162-7
- [18] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math., vol. 30, 1981, 713-747.10.1512/iumj.1981.30.30055
- [19] S. Jahedi, E. Azhdari, On the intuitionistic fuzzy metric spaces, J. Math. Ext., vol. 2, no. 1-2, 2007-2008, 81-92.
- [20] X. Li, M. Guo, Y. Su, On the intuitionistic fuzzy metric spaces and the intuitionistic fuzzy normed spaces, J. Nonlinear Sci. Appl., vol. 9, no. 9, 2016, 5441-5448.10.22436/jnsa.009.09.12
- [21] B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1977.
- [22] A. Mohamad, Fixed-point theorems in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, vol. 34, no. 5, 2007, 1689-1695.10.1016/j.chaos.2006.05.024
- [23] G. Mora, Optimization by space-densifying curves as a natural generalization of the Alienor method, Kybernetes, vol. 29, no. 5-6, 2000, 746-754.10.1108/03684920010333170
- [24] G. Mora, The Peano curves as limit of α-dense curves, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, vol. 9, no. 1, 2005, 23-28.
- [25] G. Mora, Y. Cherruault, Characterization and generation of α-dense curves, Comput. Math. Appl., vol. 33, no. 9, 1997, 83-91.10.1016/S0898-1221(97)00067-9
- [26] G. Mora, D. A. Redtwitz, Densifiable metric spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, vol. 105, no. 1, 2011, 71-83.10.1007/s13398-011-0005-y
- [27] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, vol. 22, no. 5, 2004, 1039-1046.10.1016/j.chaos.2004.02.051
- [28] M. Rafi, M. S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iran. J. Fuzzy Syst., vol. 3, no. 1, 2006, 23-29.
- [29] R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals, vol. 27, no. 2, 2006, 331-344.10.1016/j.chaos.2005.03.019
- [30] H. Sagan, Space-filling curves, Springer, New York, 1994.10.1007/978-1-4612-0871-6
- [31] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math.,vol. 10, no. 1, 1960, 313-334.10.2140/pjm.1960.10.313
- [32] N. A. Secelean, Countable iterated function systems, Far East J. Dyn. Syst., vol. 3, no. 2, 2001, 149-167.
- [33] N. A. Secelean, Generalized countable iterated function systems, Filomat, vol. 25, no. 1, 2011, 21-36.10.2298/FIL1101021S
- [34] N. A. Secelean, Iterated function systems consisting of F -contractions, Fixed Point Theory Appl., 277, 2013.10.1186/1687-1812-2013-277
- [35] N. A. Secelean, The existence of the attractor of countable iterated function systems, Mediterr. J. Math., vol. 9, no. 1, 2012, 61-79.10.1007/s00009-011-0116-x
- [36] G. Sun, K. Yang, Generalized Fuzzy Metric Spaces with Properties, Research Journal of Applied Sciences, Engineering and Technology, vol. 2, no. 7, 2010, 673-678.
- [37] R. Uthayakumar, D. Easwaramoorthy, Analysis on fractals in intuitionistic fuzzy metric spaces, Int. J. of Math., Comp., Phy., Electrical and Computer Engineering, vol. 6, no. 8, 2012, 1140-1146.
- [38] R. Uthayakumar, D. Easwaramoorthy, Analysis on fractals in fuzzy metric spaces, Fractals, vol. 19, no. 3, 2011, 379-386.10.1142/S0218348X11005543
- [39] L. A. Zadeh, Fuzzy sets, Inform and Control, vol. 8, 1965, 338-353.10.1016/S0019-9958(65)90241-X