Have a personal or library account? Click to login
Iterative methods for extended general variational inequalities Cover

Iterative methods for extended general variational inequalities

By: Ayache Benhadid  
Open Access
|Mar 2022

References

  1. [1] A. Benhadid, K. Saoudi, On Extended General Variational Inequalities, Advances in Nonlinear Variational Inequalities., vol. 18, no. 2, 2015, 95-97.
  2. [2] A. Capatina, M. Cocou, M. Raous, A class of implicit variational inequalities and applications to frictional contact, Math. Methods Appl. Sci., vol. 32, 2009, 1804–1827.10.1002/mma.1112
  3. [3] Y. Censor, A. Gibali, S. Reich, The subgradient extragradientmethod for solving variational inequalities in Hilbert space. Journal of Optimization Theory and Applications., vol. 148, 2011, 318-335.10.1007/s10957-010-9757-3
  4. [4] Q. L. Dong, Y. J. Cho, M. Th. Rassias. The projection and contraction methods for finding common solutions to variational inequality problems. Optimzation Letter., vol. 12, 2018, 1871-1896.10.1007/s11590-017-1210-1
  5. [5] P. T. Kha, P. D. Khanh, Variational inequalities governed by strongly pseudomonotone operators, Optimization., 2021 doi: 10.1080/02331934.2020.1847107.10.1080/02331934.2020.1847107
  6. [6] M. A. Noor, Differentiable nonconvex functions and general variational inequalities, Appl. Math. Comput., vol. 199, 2008, 623-630.10.1016/j.amc.2007.10.023
  7. [7] M. A. Noor, On extended general variational inequalities, Applied Mathematics Letters., vol. 22, 2009, 182-186.10.1016/j.aml.2008.03.007
  8. [8] M. A. Noor, General variational inequalities, Applied Mathematics Letters., vol. 1, 1988, 119-121.10.1016/0893-9659(88)90054-7
  9. [9] M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalities, Acta Applicandae Math., vol. 170, no. 1, 2020, 981-1046.10.1007/s10440-020-00366-2
  10. [10] S. Reich, DV. Thong, Q. L. Dong, et al. New algorithms and convergence theorems for solving variational inequalities with non-Lipschitz mappings. Numer Algorithms., 2020. doi:10.1007/s11075-020-00977-8.10.1007/s11075-020-00977-8
  11. [11] DV. Thong, DV. Hieu. Weak and strong convergence theorems for variational inequality problems. Numer Algorithms., vol. 78, 2017, 1045-1060.10.1007/s11075-017-0412-z
DOI: https://doi.org/10.2478/gm-2021-0008 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 95 - 102
Submitted on: Apr 23, 2021
Accepted on: May 26, 2021
Published on: Mar 30, 2022
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Ayache Benhadid, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.