Have a personal or library account? Click to login
Ulam stability for Thunsdorff and Cauchy-Schwarz equations Cover

Ulam stability for Thunsdorff and Cauchy-Schwarz equations

By: Laura Hodiş  
Open Access
|Dec 2020

References

  1. [1] H. Alzer, On an integral inequality for concave functions, Acta. Sci. Math., vol. 56, 1992, 79-82.
  2. [2] S. Barza, C. P. Niculescu, Integral equations for concave functions, Publ. Math. Debrecen, vol. 68, 2006, 139-159.10.5486/PMD.2006.3197
  3. [3] J. Brzdek, D. Popa, I. Raşa, B. Xu, Ulam stability of Operators, Academic Press, Elsevier, 2018.
  4. [4] A. M. Fink, M. Jodeit Jr., Jensen inequalities for functions with monotonicities, Aeq. Mathematicae, vol. 40, 1990, 26-43.10.1007/BF02112278
  5. [5] M. Petschke, Extremalstrahlen konvexer Kegel un komplementäre Ungleichungen, Dissertation Darmstadt, 1989.
  6. [6] D. Popa, I. Raşa, Best constant in Hyers-Ulam stability of some functional equations, Carpathian J. Math., vol. 30, 2014, 383-386.10.37193/CJM.2014.03.04
  7. [7] I. Raşa, T. Vladislav, Inegalităţi şi aplicaţii, Editura Tehnică, Bucureşti, 2000.
  8. [8] L. Stanković, Extentions of Thunsdorff ’s inequality to the case of convex functions of order k, Univ. Beograd, Publ. Elektrotehn. Fak. Mat. Fiz., no. 498-541, 1975, 145-148.
  9. [9] H. Thunsdorff, Konvex Funktionen und Ungleichungen, Univ. of Göttingen, 1932.
DOI: https://doi.org/10.2478/gm-2020-0015 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 61 - 65
Submitted on: Jul 26, 2020
Accepted on: Sep 20, 2020
Published on: Dec 31, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Laura Hodiş, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.