Have a personal or library account? Click to login
Generalized Briot-Bouquet differential equation based on new differential operator with complex connections Cover

Generalized Briot-Bouquet differential equation based on new differential operator with complex connections

Open Access
|Jul 2020

References

  1. [1] A. A. Lupas, On special differential subordinations using Salagean and Ruscheweyh operators, Math. Inequal. Appl., vol. 12, no. 4, 2009, 781–790.10.7153/mia-12-61
  2. [2] A. A. Lupas, Some differential subordinations using Ruscheweyh derivative and Salaagean operator, Advances in Difference Equations, vol. 2013, no. 150, 2013, 1–12.
  3. [3] N. E. Cho, et al., Radius problems for starlike functions associated with the sine function, Bull. Iran. Math. Soc., vol.45, no.213, 2019, 1–20.10.1007/s41980-018-0127-5
  4. [4] C. F. Dunkl, Differential-difference operators associated with reflections groups, Trans. Am. Math. Soc., vol. 311, 1989, 167–183.10.1090/S0002-9947-1989-0951883-8
  5. [5] P. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften; 259 Springer-Verlag New York Inc., 1983.
  6. [6] R. W. Ibrahim, M. Darus, Subordination inequalities of a new Salagean-difference operator, International Journal of Mathematics and Computer Science, vol. 14, no. 3, 2019, 573–582.
  7. [7] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., vol. 45, no. 4, 2000, 647–657.
  8. [8] K. Khatter, et al., Starlike functions associated with exponential function and the lemniscate of Bernoulli, Revista de la Real Academia de Ciencias Exactas, Serie A. Matematicas, vol. 113, no. 1, 2019, 233–253.10.1007/s13398-017-0466-8
  9. [9] V. Kumar, et al., Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca, vol. 69, 2019, 1053–1064.10.1515/ms-2017-0289
  10. [10] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In Proceedings of the Conference on Complex Analysis, Tianjin, China, vol. 19, no. 23, 1992, 1–13.
  11. [11] R. Mendiratta, S. Nagpal., V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., vol. 38, 2015, 365–386.10.1007/s40840-014-0026-8
  12. [12] S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, CRC Press, 2000.10.1201/9781482289817
  13. [13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amet. Math. Soc., vol. 49, 1975, 109–115.10.1090/S0002-9939-1975-0367176-1
  14. [14] G. St. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, vol. 1013, 1983, 362–372.
  15. [15] B. A. Uralegaddi, et al., Univalent functions with positive coefficients, Tamkang J. Math., vol. 25, no. 3, 1994, 225–230.10.5556/j.tkjm.25.1994.4448
DOI: https://doi.org/10.2478/gm-2020-0008 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 105 - 114
Submitted on: Jul 4, 2019
Accepted on: Apr 30, 2020
Published on: Jul 31, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Rabha W. Ibrahim, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.