Have a personal or library account? Click to login
Calculus for the intermediate point associated with a mean value theorem of the integral calculus Cover

Calculus for the intermediate point associated with a mean value theorem of the integral calculus

Open Access
|Jul 2020

Abstract

If f, g: [a, b] → 𝕉 are two continuous functions, then there exists a point c ∈ (a, b) such that

acf(x)dx+(c-a)g(c)=cbg(x)dx+(b-c)f(c).\int_a^c {f\left(x \right)} dx + \left({c - a} \right)g\left(c \right) = \int_c^b {g\left(x \right)} dx + \left({b - c} \right)f\left(c \right).

In this paper, we study the approaching of the point c towards a, when b approaches a.

DOI: https://doi.org/10.2478/gm-2020-0005 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 59 - 66
Submitted on: Jan 8, 2020
Accepted on: May 27, 2020
Published on: Jul 31, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Emilia-Loredana Pop, Dorel Duca, Augusta Raţiu, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.