Have a personal or library account? Click to login
Improved error estimate and applications of the complete quartic spline Cover

Improved error estimate and applications of the complete quartic spline

Open Access
|Mar 2020

References

  1. [1] N. S. Barnett, S.S. Dragomir, A perturbed trapezoid inequality in terms of the fourth derivative, Korean J. Comput. Appl. Math., vol. 9, no. 1, 2002, 45-60.10.1007/BF03012339
  2. [2] A. M. Bica, M. Curilă, S. Curilă, Two-point boundary value problems associated to functional differential equations of even order solved by iterated splines, Appl. Numer. Math., vol. 110, 2016, 128–147.10.1016/j.apnum.2016.08.003
  3. [3] A. M. Bica, M. Curilă, S. Curilă, Spline iterative method for pantograph type functional differential equations, in Finite Difference Methods. Theory and Applications, I. Dimov, I. Farago, L. Vulkov (eds.), LNCS 11386, Springer Nature Switzerland, 2019, 159-166.10.1007/978-3-030-11539-5_16
  4. [4] S. Dubey, Y. P. Dubey, Convergence of C2deficient quartic spline interpolation, Adv. Comput. Sciences & Technol., vol. 10, no. 4, 2017, 519-527.
  5. [5] I. Franjić, J. Pečarić, I. Perić, General three-point quadrature formulas of Euler type, ANZIAM J., vol. 52, 2011, 309-317.10.1017/S1446181111000721
  6. [6] G. Howell, A. K. Varma, Best error bounds for quartic spline interpolation, J. Approx. Theory, vol. 58, 1989, 58-67.10.1016/0021-9045(89)90008-7
  7. [7] P. Korman, Computation of displacements for nonlinear elastic beam models using monotone iterations, Int. J. Math. Math. Sci., vol. 11, 1988, 121–128.10.1155/S0161171288000171
  8. [8] Z. Liu, New sharp error bounds for some corrected quadrature formulae, Sara-jevo J. Math., vol. 9, no. 21, 2013, 37-45.10.5644/SJM.09.1.03
  9. [9] Z. Liu, Error estimates for some composite corrected quadrature rules, Appl. Math. Letters, vol. 22, 2009, 771-775.10.1016/j.aml.2008.08.016
  10. [10] J. Pečarić, I. Franjić, Generalization of corrected Simpson’s formula, ANZIAM J., vol. 47, 2006, 367–385.10.1017/S1446181100009895
  11. [11] S.S. Rana, Y. P. Dubey, Best error bounds for decient quartic spline interpolation, Indian J. Pure Appl. Math., vol. 30, no. 4, 1999, 385-393.
  12. [12] N. Ujević, A. J. Roberts, A corrected quadrature formula and applications, ANZIAM J., vol. 45, 2004, 41-56.10.21914/anziamj.v45i0.499
  13. [13] N. Ujević, A generalization of the modified Simpson’s rule and error bounds, ANZIAM J., vol. 47, 2005, E1–E13.10.21914/anziamj.v47i0.2
  14. [14] Yu. S. Volkov, Best error bounds for the derivative of a quartic interpolation spline, Mat. Trud., vol. 1, no. 2, 1998, 68-78 (in Russian).
  15. [15] Wang Jianzhong, Huang Daren, On quartic and quintic interpolation splines and their optimal error bounds, Scientia Sinica (Ser. A), vol. 25, no. 11, 1982, 1130-1141.
  16. [16] A.-M. Wazwaz, M. A. Z. Raja, M. I. Syam, Reliable treatment for solving boundary value problems of pantograph delay differential equation, Rom. Rep. Phys., vol. 69, art. 102, 2017.
  17. [17] B. Yang, Estimates of positive solutions to a boundary value problem for the beam equation, Commun. Math. Anal., vol. 2, no. 1, 2007, 13-21.
DOI: https://doi.org/10.2478/gm-2019-0016 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 71 - 83
Submitted on: Nov 1, 2019
Accepted on: Nov 25, 2019
Published on: Mar 20, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Alexandru Mihai Bica, Diana Curilă, Zoltan Satmari, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.