Have a personal or library account? Click to login
q–analogue of generalized Ruschweyh operator related to a new subfamily of multivalent functions Cover

q–analogue of generalized Ruschweyh operator related to a new subfamily of multivalent functions

By: Shahram Najafzadeh and  Mugur Acu  
Open Access
|Mar 2020

References

  1. [1] F. Al-Oboudi, K. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., vol. 339, no. 1, 2008, 655-667.10.1016/j.jmaa.2007.05.087
  2. [2] F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. j. math. math. sci., vol. 2004, no. 27, 2004, 1429-1436.
  3. [3] G. Gasper, M. Rahman. Basic hypergeometric series, vol. 35 of Encyclopedia of Mathematics and its Applications, Cambridge university press Cambridge, UK, 1990.
  4. [4] F. H. Jackson, On q–functions and a certain difference operator, Earth Env. Sci. Trans. Roy. Soc. Edinb., vol 46, no. 2, 1909, 253-281.10.1017/S0080456800002751
  5. [5] L. Jasoria, S. Bissu, On certain generalized fractional q–integral operator of p–valent functions, International Journal on Future Revolution in Computer Science Communication Engineering, vol. 3, no. 8, 2015, 230-236.
  6. [6] I. B. Jung, Y. C. Kim, H. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., vol. 176, no. 1, 1993, 138-147.10.1006/jmaa.1993.1204
  7. [7] Y. Komato, On analytic prolongation of a family of operators, Mathematica (Cluj), vol. 39, no. 55, 1990, 141-145.
  8. [8] S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional q–calculus operators, Math. Scand., vol. 109, no. 1, 2011, 55-70.10.7146/math.scand.a-15177
  9. [9] S. Ruscheweyh, New criteria for univalent functions, Proc. Am. Math. Soc., vol. 49, no. 1, 1975, 109-115.10.1090/S0002-9939-1975-0367176-1
  10. [10] G. S. Salagean, Subclasses of univalent functions, Complex Analysis: Fifth Romanian-Finnish Seminar, Part I Bucharest, Lecture Notes in Mathematics 1013, Springer-Verlag, 1983.10.1007/BFb0066543
  11. [11] K. Selvakumaran, S. D. Purohit, A. Secer, M. Bayram, Convexity of certain q–integral operators of p–valent functions, Abstr. Appl. Anal., Hindawi, 2014.10.1155/2014/925902
DOI: https://doi.org/10.2478/gm-2019-0015 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 59 - 69
Submitted on: Jun 2, 2019
Accepted on: Oct 21, 2019
Published on: Mar 20, 2020
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Shahram Najafzadeh, Mugur Acu, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.