Have a personal or library account? Click to login

Some strong and weak form of z-continuity via Cl*

By:
Open Access
|Dec 2019

References

  1. [1] A. Acikgöz, T. Noiri, S. Yüksel, A decomposition of continuity in ideal topological spaces, Acta Math. Hungar., vol. 105, 2004, 285-289.10.1023/B:AMHU.0000049280.10577.4e
  2. [2] A. Al-Omari, On Ideal Topological spaces via cozero sets, Questions Answers Gen. Topology, vol. 34, no. 2, 2016, 83-91.10.5269/bspm.v34i1.26193
  3. [3] A. Al-Omari, Some operators in Ideal Topological spaces via cozero sets, Acta Universitatis Apulensis, vol. 48, 2016, 1-12.
  4. [4] F. G. Arenas, J. Dontchev, M. L. Puertas, Idealization of some weak separation axioms, Acta Mathematica Hungarica, vol. 89, no. 1-2, 2000, 47-53.10.1023/A:1026773308067
  5. [5] G. Aslim, A. C. Guler, T. Noiri, On decompositions of continuity and some weaker forms of continuity via idealization, Acta Mathematica Hungarica, vol. 109, no. 3, 2005, 183 - 190.10.1007/s10474-005-0241-8
  6. [6] J. Dontchev, M. Ganster, D. Rose, Ideal resolvability, Topology and Its Applications, vol. 93, no. 1, 1999, 1-16.10.1016/S0166-8641(97)00257-5
  7. [7] E. Ekici, T. Noiri, Connectedness in ideal topological spaces, Novi Sad Journal of Mathematics, vol. 38, no. 2, 2008, 65-70.
  8. [8] T. R. Hamlett, D. Janković, Ideals in general topology, General Topology and Applications, 1988, 115-125.
  9. [9] T. R. Hamlett, D. Janković, Ideals in topological spaces and the set operatory, Bollettino dell Unione Matematica Italiana, vol. 7, 1990, 863-874.
  10. [10] T. R. Hamlett, D. Janković, Compatible extensions of ideals, Boll. Un. Mat. Ita., vol. 7, 1992, 453-465.
  11. [11] D. Janković, T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, vol. 97, no. 4, 1990, 295-310.10.1080/00029890.1990.11995593
  12. [12] D. Janković, T. R. Hamlett, Compatible extensions of ideals, Bollettino della Unione Matematica Italiana, vol. 7, no. 6, 1992, 453-465.
  13. [13] K. Kuratowski, Topology I, Warszawa, 1933.
  14. [14] R. L. Newcomb, Topologies which are compact modulo an ideal [Ph.D. dissertation], University of California at Santa Barbara, 1967.
  15. [15] O. B. Ozbakir, E. D. Yildirim, On some closed sets in ideal minimal spaces, Acta Math. Hungar., vol. 125, no. 3, 2009, 227-235.10.1007/s10474-009-8240-9
  16. [16] M. K. Singal, S. B. Niemse, z-continuous mappings, Math. Student, vol. 66, 1997, 193-210.
  17. [17] S. Willard, General Topology, Dover Publications, Inc. Mineola New York, 2004.
  18. [18] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.
DOI: https://doi.org/10.2478/gm-2019-0008 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 85 - 101
Submitted on: Apr 9, 2019
Accepted on: May 14, 2019
Published on: Dec 21, 2019
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2019 A. R. Prasannan, J. Biswas, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.