Have a personal or library account? Click to login
Consensus of classical and fractional inequalities having congruity on time scale calculus Cover

Consensus of classical and fractional inequalities having congruity on time scale calculus

Open Access
|Dec 2019

References

  1. [1] J. Aczél, E. F. Beckenbach, On Hölder’s inequality, in “General inequalities 2” (Proc. Second Internat. Conf. Oberwolfach, 1978), 145-150, Birkhäuser, Basel/Stuttgart, 1980.10.1007/978-3-0348-6324-7_15
  2. [2] R. P. Agarwal, D. O’Regan, S. H. Saker, Dynamic inequalities on time scales, Springer International Publishing, Cham, Switzerland, 2014.10.1007/978-3-319-11002-8
  3. [3] G. A. Anastassiou, Principles of delta fractional calculus on time scales and inequalities, Mathematical and Computer Modelling, vol. 52, no. 3-4, 2010, 556-566.10.1016/j.mcm.2010.03.055
  4. [4] G. A. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Computers & Mathematics with Applications, vol. 59, no. 12, 2010, 3750-3762.10.1016/j.camwa.2010.03.072
  5. [5] G. A. Anastassiou, Integral operator inequalities on time scales, International Journal of Difference Equations, vol. 7, no. 2, 2012, 111-137.
  6. [6] D. Anderson, J. Bullock, L. Erbe, A. Peterson, H. Tran, Nabla dynamic equations on time scales, Pan-American Mathematical Journal, vol. 13, no. 1, 2003, 1-48.10.1007/978-0-8176-8230-9_3
  7. [7] E. F. Beckenbach, R. Bellman, Inequalities, Springer, Berlin, Göttingen and Heidelberg, 1961.10.1007/978-3-642-64971-4
  8. [8] R. Bellman, Notes on matrix theory-IV (An inequality due to Bergström), Amer. Math. Monthly, vol. 62, 1955, 172-173.10.2307/2306621
  9. [9] H. Bergström, A triangle inequality for matrices, Den Elfte Skandinaviske Matematikerkongress, 1949, Trondheim, Johan Grundt Tanums Forlag, Oslo, 1952, 264-267.
  10. [10] M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001.10.1007/978-1-4612-0201-1
  11. [11] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Boston, MA, 2003.10.1007/978-0-8176-8230-9
  12. [12] M. Bohner, H. Luo, Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Advances in Difference Equations, 2006, 1-15.10.1155/ADE/2006/54989
  13. [13] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, General Mathematics, vol. 20, no. 4, 2012, 63-69.
  14. [14] C. Dinu, Convex functions on time scales, Annals of the University of Craiova, Math. Comp. Sci. Ser., vol. 35, 2008, 87-96.
  15. [15] D. M. Bătineţu-Giurgiu, O. T. Pop, A generalization of Radon’s inequality, Creative Math. & Inf., vol. 19, no. 2, 2010, 116-121.
  16. [16] G. H. Hardy, J. E. Littlewood, G. Pölya, Inequalities, 2nd Ed., Cambridge, University Press, 1952.
  17. [17] S. Hilger, Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. thesis, Universität Würzburg, 1988.
  18. [18] C. H. Hong, C. C. Yeh, Rogers-Hölder’s inequality on time scales, International Journal of Pure and Applied Mathematics, vol. 29, no. 3, 2006, 289-309.
  19. [19] D. S. Mitrinović, Analytic inequalities, Springer-Verlag, Berlin, 1970.10.1007/978-3-642-99970-3
  20. [20] J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber. Acad. Wissen. Wien, vol. 122, 1295-1438, 1913.
  21. [21] M. J. S. Sahir, Dynamic inequalities for convex functions harmonized on time scales, Journal of Applied Mathematics and Physics, vol. 5, 2017, 2360-2370.10.4236/jamp.2017.512193
  22. [22] M. J. S. Sahir, Fractional dynamic inequalities harmonized on time scales, Cogent Mathematics & Statistics, vol. 5, 2018, 1-7.10.1080/23311835.2018.1438030
DOI: https://doi.org/10.2478/gm-2019-0006 | Journal eISSN: 1584-3289 | Journal ISSN: 1221-5023
Language: English
Page range: 57 - 69
Submitted on: Oct 9, 2018
Accepted on: May 9, 2019
Published on: Dec 21, 2019
Published by: Lucian Blaga University of Sibiu
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Muhammad Jibril Shahab Sahir, published by Lucian Blaga University of Sibiu
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.