References
- 1. Rigby, B. E., Malott, K., Hetzel, S. J., Soukup, J. W., 2021: Incidence and risk factors for surgical site infections following oromaxillofacial oncologic surgery in dogs. Front. Vet. Sci., 8, 760628. DOI: 10.3389/fvets.2021.760628
- 2. Williams, R. W., Cole, S., and Holt, D. E., 2020: Micro-organisms associated with incisional infections after gastrointestinal surgery in dogs and cats. Vet. Surg., 49, 7, 1301–1306. DOI: 10.1111/vsu.13495
- 3. Stetter, J., Boge, G. S., Grönlund, U., Bergström, A., 2021: Risk factors for surgical site infection associated with clean surgical procedures in dogs. Res. Vet. Sci., 136, 616–621. DOI: 10.1016/j.rvsc.2021.04.012
- 4. Burgess, B. A., 2019: Prevention and surveillance of surgical infections: A review. Vet. Surg., 48, 3, 284–290. DOI: 10.1111/vsu.13176
- 5. Bernstein, J. D., Bracken, D. J., Abeles, S. R., Orosco, R. K., Weissbrod, P. A., 2022: Surgical wound classification in otolaryngology: A state‐of‐the‐art review. World J. Otorhinolaryngol., 8, 2, 139–144; DOI: 10.1002/wjo2.63
- 6. Corsini, C. M. M., Silva, V. O., Carvalho, O. V., Sepúlveda, R. V., Valente, F. L., Reis, E. C. C., et al., 2020: Emergence of multidrug-resistant bacteria isolated from surgical site infection in dogs and cats. Arq. Bras. Med. Vet. Zootec., 72, 4, 1213–1220. DOI: 10.1590/1678-4162-10978
- 7. Yaovi, A. B., Sessou, P., Tonouhewa, A. B. N., Hounmanou, G. Y. M., Thomson, D., Pelle, R., et al., 2022: Prevalence of antibiotic-resistant bacteria amongst dogs in Africa: A meta-analysis review. Onderstepoort J. Vet. Res., 89, 1, 1–12. DOI: 10.4102/ojvr.v89i1.1970
- 8. Cowan, S. T., Steel, K. J., 1993: Fungi and yeast, in G.I Barrow, R. K. A. Felthan. Manual for the Identification of Medical Bacteria (3rd Edition), Cambridge University press, United Kingdom, 213–218.
- 9. Onu, O. S., Chikwendu, C. I., Nweke, C. O., 2023: J. Adv. Microbiol., 23, 7, 32–39. DOI: 10.9734/jamb/2023/v23i7737
- 10. Amulioto, J., Muturi, M. W., Mathenge, S., Mutua, G. M., 2020: Antibiotic susceptibility patterns of bacteria isolates from post-operative wound infections among patients attending Mama Lucy Kibaki Hospital, Kenya. Afr. J. Microbiol Res., 14, 420–425. DOI:10.5897/AJMR2020.9357
- 11. Clinical and Laboratory Standards Institute, 2021: Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement. M100-S19
- 12. Stata 15, StataCorp, 2017: Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC.
- 13. Ali, K. M., Al-Jaff, B. M. A., 2021: Source and antibiotic susceptibility of gram-negative bacteria causing superficial incisional surgical site infections. Int. J. Surg., 30, 100318. DOI: 10.1016/j.ijso.2021.01.007
- 14. Ajadi, T. A., Oyeyemi, M. O., 2018: Dog castration records in Veterinary Teaching Hospital, FUNAAB. J. Nat. Sci. Eng. Tech., 17 (1 & 2), 67–74.
- 15. Evangelista, S. de S., dos Santos, S. G., Stoianoff, M. A. de R., de Oliveira, A. C., 2015: Analysis of microbial load on surgical instruments after clinical use and following manual and automated cleaning. Am. J. Infec. Control, 43, 5, 522–5277. DOI: 10.1016/j.ajic.2014.12.018
- 16. Li, X., Ji, G., 2017: Evaluation of the direct relationship between bacterial load on contaminated stainless steel surgical instruments and the holding time prior to disinfection and also to analyse the efficacy of different disinfecting solutions. Biomed Res., 28, 10, 4680–4687.
- 17. Dreikausen, L., Blender, B., Trifunovic-Koenig, M., Salm, F., Bushuven, S., Gerber, B., Henke, M., 2023: Analysis of microbial contamination during use and reprocessing of surgical instruments and sterile packaging systems. PLoS One, 18, 1, e0280595. DOI: 10.1371/journal.pone.0280595
- 18. Owusu, E., Asane, F. W., Bediako-Bowan, A. A., Afutu, E., 2022: Bacterial contamination of surgical instruments used at the surgery department of a major teaching hospital in a resource-limited country: An observational study. Dis., 10, 4, 81–90. DOI: 10.3390/diseases10040081
- 19. Wistrand, C., Falk-Brynhildsen, K., Sundqvist, A.-S., 2022: Important interventions in the operating room to prevent bacterial contamination and surgical site infections. Am. J. Infect. Control, 50, 9, 1049−1054. DOI: 10.1016/j. ajic.2021.12.021
- 20. Patino-Marin, N., Villa-Garcia, L. D., Teran-Figueroa, Y., Medina-Solis, C. E., Rangel-Flores, Y. Y., Salas-Orozco, M. F., et al., 2024: Presence and causes of sterilization equipment failures with biological indicators in dental offices in Mexico: A longitudinal cohort. Medicina, 60, 9, 1525–1534. DOI: 10.3390/medicina60091525
- 21. Verdial, C., Carneiro, C., Machado, I., Tavares, L., Almeida, V., Oliveira, M., Gil, S., 2021: Controlling bacteriological contamination of environmental surfaces at the biological isolation and containment unit of a veterinary teaching hospital. Ir. Vet. J., 74, 18–25. DOI: 10.1186/s13620-021-00197-z
- 22. Sfaciotte, R. A. P., Coronel, L. G., Snak, A., Bordin, J. T., Wildemann, P., Melo, F. D., et al., 2017: Antimicrobial resistance phenotypic profile of isolates from clinical infections in dogs. Acta Sci. Vet., 45, 1485–1492.
- 23. Kožár, M., Hamilton, H., Koščová, J., 2018: Types of wounds and the prevalence of bacterial contamination of wounds in the clinical practice of small animals. Folia Vet., 62, 4, 39–47; DOI: 10.2478/fv-2018-0036
