References
- 1. Di Cerbo, A., Morales-Medina, J. C., Palmieri, B., Pezzuto, F., Cocco, R., Flores, G., Iannitti, T., 2017: Functional foods in pet nutrition: Focus on dogs and cats. Res. Vet. Sci., 112, 161–166. DOI: 10.1016/j.rvsc.2017.03.020
- 2. Axelsson, E., Ratnakumar, A., Arendt, M. L., Maqbool, K., Webster, M. T., Perloski, M., Liberg, O., Arnemo, J. M., Hedhammar, A., Lindblad-Toh, K., 2013: The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature, 495, 360–364. DOI: 10.1038/nature11837
- 3. Bosch, G., Hagen-Plantinga, E. A., Hendriks, W. H., 2015: Dietary nutrient profiles of wild wolves: insights for optimal dog nutrition? Br. J. Nutr., 113, S40–S54. DOI: 10.1017/S0007114514002311
- 4. Morris, J. G., 2002: Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Res., 15, 153–168. DOI: 10.1079/NRR200238
- 5. Kempe, R., Saastamoinen, M., Hyyppä, S., 2004: Composition, digestibility and nutritive value of cereals for dogs. Agric. Food Sci., 13, 5–17. DOI: 10.2137/1239099041838067
- 6. Yu, J, Pedroso, I. R, 2023: Mycotoxins in cereal-based products and their impacts on the health of humans, livestock animals and pets. Toxins, 15, 8, 480. DOI: 10.3390/toxins15080480
- 7. Han, X., Chen, L., Li, W., Zhang, L., Dong, H. J. F. G., 2020: Endocytic FgEde1 regulates virulence and autophagy in Fusarium graminearum. Fungal Genet. Biol., 141, 103400. DOI: 10.1016/j.fgb.2020.103400
- 8. Li, Y., Gao, H., Wang, R., Xu, Q., 2023: Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front. Microbiol., 14, 1141378. DOI: 10.3389/fmicb.2023.1141378
- 9. Hughes, D. M., Gahl, M. J., Graham, C. H., Grieb, S. L., 1999: Overt signs of toxicity to dogs and cats of dietary deoxynivalenol. J. Anim. Sci., 1999, 77, 693–700. DOI: 10.2527/1999.773693x
- 10. Songsermsakul, P., Razzazi-Fazeli, E., Böhm, J., Zentek, J., 2007: Occurrence of deoxynivalenol (DON) and ochratoxin A (OTA) in dog foods. Mycotoxin Res., 23, 65–67. DOI: 10.1007/BF02946027
- 11. Oswald, I. P., Marin, D. E., Bouhet, S., Pinton, P., Taranu, I., Accensi, F., 2005: Immunotoxicological risk of mycotoxins for domestic animals. Food Addit. Contam., 22, 4, 354–360. DOI: 10.1080/02652030500058320
- 12. Yazar, S., Omurtag, G. Z., 2008: Fumonisins, trichothecenes and zearalenone in cereals. Int. J. Mol. Sci., 9, 2062–2090. DOI: 10.3390/ijms9112062
- 13. Thapa, A., Horgan, K. A., White, B., Walls, D., 2021: Deoxynivalenol and zearalenone—synergistic or antagonistic agri-food chain co-contaminants? Toxins, 13, 8, 561. DOI: 10.3390/toxins13080561
- 14. Gajęcka, M., Zielonka, Ł., Gajęcki, M., 2015: The effect of low monotonic doses of zearalenone on selected reproductive tissues in pre-pubertal female dogs —A Review. Molecules, 20, 11, 20669–20687. DOI: 10.3390/molecules201119726
- 15. Svoboda, M., Senior, D. F., Doubek, J., Klimeš, J., 2001: Nemoci psa a kočky II. díl. Brno, Noviko, pp.1022. ISBN 8090259537.
- 16. EFSA panel on contaminants in the food chain (contam), 2017: Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J., 15, 7, e04851. DOI: 10.2903/j.efsa.2017.4851
- 17. Commission Recommendation (Eu) 2016/1319 Of 29 July 2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016H1319. Accessed March 14, 2024.
- 18. Cao, H., Wu, S., Sun, C., 2013: Research advancement on biosynthesis and biodegradation of deoxynivalenol (Don). J. Chin. Cereals Oils Assoc., 28, 116–123.
- 19. Böhm, J., Koinig, L., Razzazi-Fazeli, E., Blajet-Kosicka, A., Twaruzek, M., Grajewski, J., Lang, C., 2010: Survey and risk assessment of the mycotoxins deoxynivalenol, zearalenone, fumonisins, ochratoxin A, and aflatoxins in commercial dry dog food. Mycotoxin Res., 26, 3, 147–153. DOI: 10.1007/s12550-010-0049-4
- 20. Macías-Montes, A., Rial-Berriel, C., Acosta-Dacal, A., Henríquez-Hernández, L. A., Almeida-González, M., Rodríguez-Hernández, Á., Luzardo, O. P., 2020: Risk assessment of the exposure to mycotoxins in dogs and cats through the consumption of commercial dry food. Sci. Total Environ., 708, 134592. DOI: 10.1016/j.scitotenv.2019.134592
- 21. Stopa, E., Gajęcka, M., Babińska, I., Zielonka, Ł., Gajęcki, M., 2014: The effect of experimental exposure to low doses of zearalenone on uterine histology and morphometry in prepubertal bitches. Theriogenology, 82, 537–545. DOI: 10.1016/j.theriogenology.2014.05.002
- 22. Boermans, H. J., Leung, M. C., 2007: Mycotoxins and the pet food industry: Toxicological evidence and risk assessment. Int. J. Food Microbiol., 119, 95–102. DOI: 10.1016/j. ijfoodmicro.2007.07.063
- 23. Witaszak, N., Waśkiewicz, A., Bocianowski, J., Stępień, Ł., 2020: Contamination of pet food with mycobiota and Fusarium mycotoxins—Focus on dogs and cats. Toxins, 12, 2, 130. DOI: 10.3390/toxins12020130
- 24. Gajęcka, M., 2012: The effect of low-dose experimental zearalenone intoxication on the immunoexpression of oestrogen receptors in the ovaries of pre-pubertal bitches. Pol. J. Vet. Sci., 15, 685–691. DOI: 10.2478/v10181-012-0106-3
