Have a personal or library account? Click to login
Mphages and the Blood-Brain Barrier: A Review Cover

Mphages and the Blood-Brain Barrier: A Review

Open Access
|Mar 2024

References

  1. Ahlawat, J., Guilama Barroso, G., Masoudi Asil, S., Alvarado, M., Armendariz, I., Bernal, J., et al., 2020: Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega, 5, 22, 12583–12595. DOI: 10.1021/acsomega.0c01592.
  2. Barr, J. J., 2017: A bacteriophages journey through the human body. Immunol. Rev., 279, 1, 106–122. DOI: 10.1111/imr.12565.
  3. Bellettato, C. M., Scarpa, M., 2018: Possible strategies to cross the blood-brain barrier. Ital. J. Ped., 44, 2, 131. DOI: 10.1186/s13052-018-0563-0.
  4. Cabezas, S., Rojas, G., Pavon, A., Alvarez, M., Pupo, M., Guillen, G., et al., 2008: Selection of phage-displayed human antibody fragments on Dengue virus particles captured by a monoclonal antibody: application to the four serotypes. J. Virol. Methods, 147, 2, 235–243. DOI: 10.1016/j.jviromet.2007.09.001.
  5. Carrera, M. R., Kaufmann, G. F., Mee, J. M., Meijler, M. M., Koob, G. F., Janda K. D., 2004: Treating cocaine addiction with viruses. Proc. Natl. Acad. Sci. USA. 101, 28, 10416–10421. DOI: 10.1073/pnas.0403795101.
  6. Carroll-Portillo, A., Lin, H. C., 2019: Bacteriophage and the innate immune system: Access and signaling. Microorganisms, 7, 12. DOI: 10.3390/microorganisms7120625.
  7. Chambers, T. J., Diamond, M. S., 2003: Pathogenesis of flavivirus encephalitis. Adv. Virus Res., 60, 273–342. DOI: 10.1016/s0065-3527(03)60008-4.
  8. Cho, C. F., Ghotmi, Y., Fadzan, C., Wolfe, J., Bergmann, S., Qu, Y., et al., 2018: DDIS-26. BTP-7, a novel peptide for, therapeutic targeting of malignanat brain tumours. Neuro-Oncology, 20, 6, 74. DOI: 10.1093/neuonc/noy148.305.
  9. Chopin, M. C., Rouault, A., Ehrlich, S. D., Gautier, M., 2002: Filamentous phage active on the gram-positive bacterium Propionibacterium freudenreichii. J. Bacteriol., 184, 7, 2030–2033. DOI: 10.1128/jb.184.7.2030-2033.2002.
  10. Dimant, H., Solomon, B., 2010: Filamentous phages reduce alpha-synuclein oligomerization in the membrane fraction of SH-SY5Y cells. Neurodegener. Dis., 7, 1–3, 203–205. DOI: 10.1159/000295664.
  11. Dubos, R. J., Straus, J. H., Pierce, C., 1943: The multiplication of bacteriphage in vivo and its protective effect against an experimental infection with Shigella dysenteriae. J. Exp. Med., 78, 3, 161–168. DOI: 10.1084/jem.78.3.161.
  12. Dyrna, F., Hanske S., Krueger, M., Bechmann, I., 2013: The blood-brain barrier. J. Neuroimmune Pharmacol., 8, 4, 763–773. DOI: 10.1007/s11481-013-9473-5.
  13. Frenkel, D., Solomon, B., 2002: Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Nat. Acad. Sci., 99, 8, 5675–5679. DOI: 10.1073/pnas.072027199.
  14. Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., et al., 2005: Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect. Immun., 73, 2, 1014–1022. DOI: 10.1128/iai.73.2.1014-1022.2005.
  15. Hanlon, G. W., 2007: Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents, 30, 2, 118–128. DOI: 10.1016/j.ijantimicag.2007.04.006.
  16. Hay, I. D., Lithgow, T., 2019: Filamentous phages: Masters of a microbial sharing economy. EMBO Rep., 20, 6. DOI: 10.15252/embr.201847427.
  17. Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Bhide, M., et al., 2022: Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Front. Microbiol., 13, 801466. DOI: 10.3389/fmicb.2022.801466.
  18. Ivanenkov, V., Felici, F., Menon, A. G., 1999: Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim. Biophysic. Acta (BBA) – Mol. Cell Res., 1448, 3, 450–462. DOI: 10.1016/S0167-4889(98)00162-1.
  19. Jernigan, D. A., Hart, M. C., Dodd, K. K., Jameson, S., Farney, T., et al., 2021: Induced native phage therapy for the treatment of Lyme disease and relapsing fever: A retrospective review of first 14 months in One clinic. Cureus. 13, 11, e20014. DOI: 10.7759/cureus.20014.
  20. Johnston, N., 2002: Viral Trojan horse for combating tuberculosis. Drug Discovery Today, 7, 6, 333–335. DOI: 10.1016/S1359-6446(02)02222-5.
  21. Ju, Z., Sun, W., 2017: Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv., 24, 1, 1898–1908. DOI: 10.1080/10717544.2017.1410259.
  22. Kadry, H., Noorani, B., Cucullo, L. A., 2020: A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS, 17, 1, 69. DOI: 10.1186/s12987-020-00230-3.
  23. Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S. Moghofei, M., Hamblin, M. R., et al., 2016: Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev., 106, 45–62. DOI: 10.1016/j.addr.2016.03.003.
  24. Keller, R., Engley, F. B., Jr., 1958: Fate of bacteriophage particles introduced into mice by various routes. Proc. Soc. Exper. Biol. Med., 98, 3, 577–580. DOI: 10.3181/00379727-98-24112.
  25. Kleinbeck, F., Kuhn, A., 2021: Membrane insertion of the M13 minor coat protein G3p is dependent on YidC and the SecAYEG translocase. Viruses, 13, 7. DOI: 10.3390/v13071414.
  26. Krishnan, R., Tsubery, H., Proschitsky, M. Y., Asp, E., Lulu, M., Gilead, S., et al., 2014: A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J. Mol. Biol., 426, 13, 2500–2519. DOI: 10.1016/j.jmb.2014.04.015.
  27. Ksendzovsky, A., Walbridge, S., Saunders, R. C., Asthagiri, A. R., Heiss, J. D., Lonser, R. R., et al., 2012: Convection-enhanced delivery of M13 bacteriophage to the brain. J. Neurosurg., 117, 2, 197–203. DOI: 10.3171/2012.4.Jns111528.
  28. Li, J., Feng, L., Jiang, X., 2015: In vivo phage display screen for peptide sequences that cross the blood–cerebro-spinal-fluid barrier. Amino Acids, 47, 2, 401–405. DOI: 10.1007/s00726-014-1874-0.
  29. Lubkowski, J., Hennecke, F., Plückthun, A., Wlodawer, A., 1999: Filamentous phage infection: Crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure, 7, 6, 711–722. DOI: 10.1016/s0969-2126(99)80092-6.
  30. Majerova, P., Hanes, J., Olesova, D., Sisnky, J., Pilipcinec, E., Kovac, A., 2020: Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules, 25, 4. DOI: 10.3390/molecules25040874.
  31. Messing, J., 2016: Phage M13 for the treatment of Alzheimer and Parkinson disease. Gene. 583, 2, 85–89. DOI: 10.1016/j. gene.2016.02.005.
  32. Moineau, S., 2013: Bacteriophage. In Maloy, S., Hughes, K. (Ed.): Brenner’s Encyclopedia of Genetics, 2nd edn., Academic Press, San Diego, 280–283.
  33. Møllgård, K., Dziegielewska, K. M., Holst, C. B., Hab-good, M. D., Saunders, N. R., et al., 2017: Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep., 7, 1, 11603. DOI: 10.1038/s41598-017-11596-0.
  34. Nguyen, S., Baker, K., Padman, B. S., Patwa, R., Dunstan, R. A., Weston, T. W., et al., 2017: Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8, 6. DOI: 10.1128/mbio.01874-17.
  35. Ojala, V., Laitalainen, J., Jalasvouri, M., 2013: Fight evolution with evolution: Plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol. Appl., 6, 6, 925–932. DOI: 10.1111/eva.12076.
  36. Riechmann, L., Holliger, P., 1997: The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 90, 2, 351–360. DOI: 10.1016/s0092-8674(00)80342-6.
  37. Smith, G. P., Petrevenko, V. A., 1997: Phage display. Chem. Rev., 97, 2, 391–410. DOI: 10.1021/cr960065d.
  38. Songsivilai, S., Dharakul, T., 1998: Genetically engineered single-chain Fvs of human immunoglobulin against hepatitis C virus nucleocapsid protein derived from universal phage display library. Asian Pac. J. Allergy Immunol., 16, 1, 31.
  39. Terstappen, G. C., Meyer, A. H., Bell, R. D., Zhang, W., et al., 2021: Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov., 20, 5, 362–383. DOI: 10.1038/s41573-021-00139-y.
  40. Tsedev, U., Lin, C. W., Hess, G. T., Sarkaria, J. N., Lam, F. C., Belcher, A. M., 2022: Phage particles of controlled length and genome for in vivo targeted glioblastoma imaging and therapeutic delivery. ACS Nano, 16, 8, 11676–11691. DOI: 10.1021/acsnano.1c08720.
  41. Ueno, M., 2009: Mechanisms of the penetration of blood-borne substances into the brain. Curr. Neuropharmacol., 7, 2, 142–149. DOI: 10.2174/157015909788848901.
  42. Wan, X. M., Chen, Y. P., Xu, W. R., Yang, W. J., Wen, L. P., 2009: Identification of nose-to-brain homing peptide through phage display. Peptides, 30, 2, 343–350. DOI: 10.1016/j.peptides.2008.09.026.
  43. Wang, Y., Sheng, J., Chai, J., Zhu, C., Li, X., Yang, W., Cui, R., et al., 2021: Filamentous bacteriophage – a powerful carrier for glioma therapy. Front. Immunol., 12, 729336. DOI: 10.3389/fimmu.2021.729336.
  44. Wood, T., Nance, E., 2019: Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng., 3, 4, 040901. DOI: 10.1063/1.5117299.
  45. Wu, D., Chen, Q. Chen X., Han, F., Chen, Z., Wang, Y., 2023: The blood–brain barrier: Structure, regulation, and drug delivery. Signal Transd. Target. Ther., 8, 1, 217. DOI: 10.1038/s41392-023-01481-w.
  46. Wu, L. P., Ahmadvand, D., Su, J., Hall, A., Tan, X., Farhangrazi, Z. S., et al., 2019: Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun., 10, 1, 4635. DOI: 10.1038/s41467-019-12554-2.
  47. Yang, F., Liu, L., Neuenschwander, P. F., Idell, S., Vankayalapati, R., Jain, K. G., et al., 2022: Phage display-derived peptide for the specific binding of SARS-CoV-2. ACS Omega, 7, 4, 3203–3211. DOI: 10.1021/acsomega.1c04873.
DOI: https://doi.org/10.2478/fv-2024-0002 | Journal eISSN: 2453-7837 | Journal ISSN: 0015-5748
Language: English
Page range: 15 - 21
Submitted on: Jan 2, 2024
Accepted on: Feb 6, 2024
Published on: Mar 22, 2024
Published by: The University of Veterinary Medicine and Pharmacy in Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tomáš Maľarik, Katarína Bhide, Lea Talpašová, Mangesh Bhide, published by The University of Veterinary Medicine and Pharmacy in Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.