References
- Ahlawat, J., Guilama Barroso, G., Masoudi Asil, S., Alvarado, M., Armendariz, I., Bernal, J., et al., 2020: Nanocarriers as potential drug delivery candidates for overcoming the blood-brain barrier: Challenges and possibilities. ACS Omega, 5, 22, 12583–12595. DOI: 10.1021/acsomega.0c01592.
- Barr, J. J., 2017: A bacteriophages journey through the human body. Immunol. Rev., 279, 1, 106–122. DOI: 10.1111/imr.12565.
- Bellettato, C. M., Scarpa, M., 2018: Possible strategies to cross the blood-brain barrier. Ital. J. Ped., 44, 2, 131. DOI: 10.1186/s13052-018-0563-0.
- Cabezas, S., Rojas, G., Pavon, A., Alvarez, M., Pupo, M., Guillen, G., et al., 2008: Selection of phage-displayed human antibody fragments on Dengue virus particles captured by a monoclonal antibody: application to the four serotypes. J. Virol. Methods, 147, 2, 235–243. DOI: 10.1016/j.jviromet.2007.09.001.
- Carrera, M. R., Kaufmann, G. F., Mee, J. M., Meijler, M. M., Koob, G. F., Janda K. D., 2004: Treating cocaine addiction with viruses. Proc. Natl. Acad. Sci. USA. 101, 28, 10416–10421. DOI: 10.1073/pnas.0403795101.
- Carroll-Portillo, A., Lin, H. C., 2019: Bacteriophage and the innate immune system: Access and signaling. Microorganisms, 7, 12. DOI: 10.3390/microorganisms7120625.
- Chambers, T. J., Diamond, M. S., 2003: Pathogenesis of flavivirus encephalitis. Adv. Virus Res., 60, 273–342. DOI: 10.1016/s0065-3527(03)60008-4.
- Cho, C. F., Ghotmi, Y., Fadzan, C., Wolfe, J., Bergmann, S., Qu, Y., et al., 2018: DDIS-26. BTP-7, a novel peptide for, therapeutic targeting of malignanat brain tumours. Neuro-Oncology, 20, 6, 74. DOI: 10.1093/neuonc/noy148.305.
- Chopin, M. C., Rouault, A., Ehrlich, S. D., Gautier, M., 2002: Filamentous phage active on the gram-positive bacterium Propionibacterium freudenreichii. J. Bacteriol., 184, 7, 2030–2033. DOI: 10.1128/jb.184.7.2030-2033.2002.
- Dimant, H., Solomon, B., 2010: Filamentous phages reduce alpha-synuclein oligomerization in the membrane fraction of SH-SY5Y cells. Neurodegener. Dis., 7, 1–3, 203–205. DOI: 10.1159/000295664.
- Dubos, R. J., Straus, J. H., Pierce, C., 1943: The multiplication of bacteriphage in vivo and its protective effect against an experimental infection with Shigella dysenteriae. J. Exp. Med., 78, 3, 161–168. DOI: 10.1084/jem.78.3.161.
- Dyrna, F., Hanske S., Krueger, M., Bechmann, I., 2013: The blood-brain barrier. J. Neuroimmune Pharmacol., 8, 4, 763–773. DOI: 10.1007/s11481-013-9473-5.
- Frenkel, D., Solomon, B., 2002: Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Nat. Acad. Sci., 99, 8, 5675–5679. DOI: 10.1073/pnas.072027199.
- Grab, D. J., Perides, G., Dumler, J. S., Kim, K. J., Park, J., Kim, Y. V., et al., 2005: Borrelia burgdorferi, host-derived proteases, and the blood-brain barrier. Infect. Immun., 73, 2, 1014–1022. DOI: 10.1128/iai.73.2.1014-1022.2005.
- Hanlon, G. W., 2007: Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int. J. Antimicrob. Agents, 30, 2, 118–128. DOI: 10.1016/j.ijantimicag.2007.04.006.
- Hay, I. D., Lithgow, T., 2019: Filamentous phages: Masters of a microbial sharing economy. EMBO Rep., 20, 6. DOI: 10.15252/embr.201847427.
- Hruškovicová, J., Bhide, K., Petroušková, P., Tkáčová, Z., Mochnáčová, E., Bhide, M., et al., 2022: Engineering the single domain antibodies targeting receptor binding motifs within the domain III of West Nile virus envelope glycoprotein. Front. Microbiol., 13, 801466. DOI: 10.3389/fmicb.2022.801466.
- Ivanenkov, V., Felici, F., Menon, A. G., 1999: Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim. Biophysic. Acta (BBA) – Mol. Cell Res., 1448, 3, 450–462. DOI: 10.1016/S0167-4889(98)00162-1.
- Jernigan, D. A., Hart, M. C., Dodd, K. K., Jameson, S., Farney, T., et al., 2021: Induced native phage therapy for the treatment of Lyme disease and relapsing fever: A retrospective review of first 14 months in One clinic. Cureus. 13, 11, e20014. DOI: 10.7759/cureus.20014.
- Johnston, N., 2002: Viral Trojan horse for combating tuberculosis. Drug Discovery Today, 7, 6, 333–335. DOI: 10.1016/S1359-6446(02)02222-5.
- Ju, Z., Sun, W., 2017: Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles. Drug Deliv., 24, 1, 1898–1908. DOI: 10.1080/10717544.2017.1410259.
- Kadry, H., Noorani, B., Cucullo, L. A., 2020: A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS, 17, 1, 69. DOI: 10.1186/s12987-020-00230-3.
- Karimi, M., Mirshekari, H., Moosavi Basri, S. M., Bahrami, S. Moghofei, M., Hamblin, M. R., et al., 2016: Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev., 106, 45–62. DOI: 10.1016/j.addr.2016.03.003.
- Keller, R., Engley, F. B., Jr., 1958: Fate of bacteriophage particles introduced into mice by various routes. Proc. Soc. Exper. Biol. Med., 98, 3, 577–580. DOI: 10.3181/00379727-98-24112.
- Kleinbeck, F., Kuhn, A., 2021: Membrane insertion of the M13 minor coat protein G3p is dependent on YidC and the SecAYEG translocase. Viruses, 13, 7. DOI: 10.3390/v13071414.
- Krishnan, R., Tsubery, H., Proschitsky, M. Y., Asp, E., Lulu, M., Gilead, S., et al., 2014: A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. J. Mol. Biol., 426, 13, 2500–2519. DOI: 10.1016/j.jmb.2014.04.015.
- Ksendzovsky, A., Walbridge, S., Saunders, R. C., Asthagiri, A. R., Heiss, J. D., Lonser, R. R., et al., 2012: Convection-enhanced delivery of M13 bacteriophage to the brain. J. Neurosurg., 117, 2, 197–203. DOI: 10.3171/2012.4.Jns111528.
- Li, J., Feng, L., Jiang, X., 2015: In vivo phage display screen for peptide sequences that cross the blood–cerebro-spinal-fluid barrier. Amino Acids, 47, 2, 401–405. DOI: 10.1007/s00726-014-1874-0.
- Lubkowski, J., Hennecke, F., Plückthun, A., Wlodawer, A., 1999: Filamentous phage infection: Crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. Structure, 7, 6, 711–722. DOI: 10.1016/s0969-2126(99)80092-6.
- Majerova, P., Hanes, J., Olesova, D., Sisnky, J., Pilipcinec, E., Kovac, A., 2020: Novel blood-brain barrier shuttle peptides discovered through the phage display method. Molecules, 25, 4. DOI: 10.3390/molecules25040874.
- Messing, J., 2016: Phage M13 for the treatment of Alzheimer and Parkinson disease. Gene. 583, 2, 85–89. DOI: 10.1016/j. gene.2016.02.005.
- Moineau, S., 2013: Bacteriophage. In Maloy, S., Hughes, K. (Ed.): Brenner’s Encyclopedia of Genetics, 2nd edn., Academic Press, San Diego, 280–283.
- Møllgård, K., Dziegielewska, K. M., Holst, C. B., Hab-good, M. D., Saunders, N. R., et al., 2017: Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci. Rep., 7, 1, 11603. DOI: 10.1038/s41598-017-11596-0.
- Nguyen, S., Baker, K., Padman, B. S., Patwa, R., Dunstan, R. A., Weston, T. W., et al., 2017: Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio, 8, 6. DOI: 10.1128/mbio.01874-17.
- Ojala, V., Laitalainen, J., Jalasvouri, M., 2013: Fight evolution with evolution: Plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol. Appl., 6, 6, 925–932. DOI: 10.1111/eva.12076.
- Riechmann, L., Holliger, P., 1997: The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 90, 2, 351–360. DOI: 10.1016/s0092-8674(00)80342-6.
- Smith, G. P., Petrevenko, V. A., 1997: Phage display. Chem. Rev., 97, 2, 391–410. DOI: 10.1021/cr960065d.
- Songsivilai, S., Dharakul, T., 1998: Genetically engineered single-chain Fvs of human immunoglobulin against hepatitis C virus nucleocapsid protein derived from universal phage display library. Asian Pac. J. Allergy Immunol., 16, 1, 31.
- Terstappen, G. C., Meyer, A. H., Bell, R. D., Zhang, W., et al., 2021: Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov., 20, 5, 362–383. DOI: 10.1038/s41573-021-00139-y.
- Tsedev, U., Lin, C. W., Hess, G. T., Sarkaria, J. N., Lam, F. C., Belcher, A. M., 2022: Phage particles of controlled length and genome for in vivo targeted glioblastoma imaging and therapeutic delivery. ACS Nano, 16, 8, 11676–11691. DOI: 10.1021/acsnano.1c08720.
- Ueno, M., 2009: Mechanisms of the penetration of blood-borne substances into the brain. Curr. Neuropharmacol., 7, 2, 142–149. DOI: 10.2174/157015909788848901.
- Wan, X. M., Chen, Y. P., Xu, W. R., Yang, W. J., Wen, L. P., 2009: Identification of nose-to-brain homing peptide through phage display. Peptides, 30, 2, 343–350. DOI: 10.1016/j.peptides.2008.09.026.
- Wang, Y., Sheng, J., Chai, J., Zhu, C., Li, X., Yang, W., Cui, R., et al., 2021: Filamentous bacteriophage – a powerful carrier for glioma therapy. Front. Immunol., 12, 729336. DOI: 10.3389/fimmu.2021.729336.
- Wood, T., Nance, E., 2019: Disease-directed engineering for physiology-driven treatment interventions in neurological disorders. APL Bioeng., 3, 4, 040901. DOI: 10.1063/1.5117299.
- Wu, D., Chen, Q. Chen X., Han, F., Chen, Z., Wang, Y., 2023: The blood–brain barrier: Structure, regulation, and drug delivery. Signal Transd. Target. Ther., 8, 1, 217. DOI: 10.1038/s41392-023-01481-w.
- Wu, L. P., Ahmadvand, D., Su, J., Hall, A., Tan, X., Farhangrazi, Z. S., et al., 2019: Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. Nat. Commun., 10, 1, 4635. DOI: 10.1038/s41467-019-12554-2.
- Yang, F., Liu, L., Neuenschwander, P. F., Idell, S., Vankayalapati, R., Jain, K. G., et al., 2022: Phage display-derived peptide for the specific binding of SARS-CoV-2. ACS Omega, 7, 4, 3203–3211. DOI: 10.1021/acsomega.1c04873.
