Have a personal or library account? Click to login
Histomorphological Investigation of the Eye of the Tree Squirrel: A Preliminary Study Cover

Histomorphological Investigation of the Eye of the Tree Squirrel: A Preliminary Study

Open Access
|Mar 2024

References

  1. Abdelftah, Z., Gaber, A. R., Abo-Eleneen, R. E., EL-Bakry, A. M., 2021: Microstructure characteristics of cornea of some birds: A comparative study. Beni-Suef Univ. J. Basic. Appl. Sci., 10, 1, 66. Available at https://bjbas.springeropen.com/articles/10.1186/s43088-021-00155-2.
  2. Agrawal, R. N, He, S., Spee, C., Cui, J. Z., Ryan, S. J., Hinton, D. R., 2007: In vivo models of proliferative vitreoretinopathy. Nat. Protoc., 2, 1, 67–77. Available at http://www.nature.com/articles/nprot.2007.4.
  3. Albuquerque, L., Pigatto, J. A. T., Freitas, L. V. da RP., 2015: Analysis of the corneal endothelium in eyes of chickens using contact specular microscopy. Semin Ciências Agrárias, 36, 6, Supl. 2, 4199. Available at http://www.uel.br/revistas/uel/index.php/semagrarias/article/view/19497.
  4. Bamidele, A. O., Akinpelu, A. I., 2020: Comparison of cranial and body morphology of tree squirrels (Helioscurius rufobranchium) in selected locations of rainforest in Nigeria. Zool., 17, 47–53. Available at https://www.ajol.info/index.php/tzool/article/view/193735.
  5. Bancroft, J. D., Layton, C., 2013: The hematoxylins and eosin. In Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques. 7th edn., Churchill Livingstone, UK, 173–86. Available at https://linkinghub.elsevier.com/retrieve/pii/B978070204226300010X.
  6. Beuerman, R. W., Pedroza, L., 1996: Ultrastructure of the human cornea. Microsc. Res. Tech., 33, 4, 320–335. DOI: 10.1002/(SICI)1097-0029(19960301)33:4%3C320::AID-JEMT3%3E3.0.CO;2-T.
  7. Brunette, I., Rosolen, S. G., Carrier, M., Abderrahman, M., Nada, O., Germain, L., et al., 2011: Comparison of the pig and feline models for full thickness corneal transplantation. Vet. Ophthalmol., 14, 6, 365–377. DOI: 10.1111/j.1463-5224.2011.00886.x.
  8. Butt, A. M., Colquhoun, K., Tutton, M., Berry, M., 1994: Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol., 23, 8, 469–485. Available at http://link.springer.com/10.1007/BF01184071.
  9. Butt, A. M., Ransom, B. R., 1989: Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia, 2, 6, 470–475. DOI: 10.1002/glia.440020609.
  10. Butt, A. M., Ransom, B. R., 1993: Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J. Comp. Neurol., 338, 1, 141–158. DOI: 10.1002/cne.903380110.
  11. Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L., Haight, J. R., 1991: How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res, 31, 2, 169–187. Available at https://linkinghub.elsevier.com/retrieve/pii/004269899190110Q.
  12. Campi, K. L., Krubitzer, L., 2010: Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number. J. Comp. Neurol., 518, 22, 4491–4512. DOI: 10.1002/cne.22466.
  13. Case, L. C., Tessier-Lavigne, M., 2005: Regeneration of the adult central nervous system. Curr. Biol., 15, 18, R749–753. Available at https://linkinghub.elsevier.com/retrieve/pii/S0960982205010304.
  14. Cech, S., 2004: An attempt to describe the ultrastructure and ultrahistochemistry of ciliary processes in mammals. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 148, 2, 201–202. DOI: 10.5507/bp.2004.038.html.
  15. Cernuda-Cernuda, R., García-Fernández, J. M., Gordijn, M. C. M., Bovee-Geurts, P. H. M., DeGrip, W. J., 2003: The eye of the African mole-rat Cryptomys anselli: To see or not to see? Eur. J. Neurosci., 17, 4, 709–720. DOI: 10.1046/j.1460-9568.2003.02485.x.
  16. Chakravarthy, A. K., Thyagaraj, N. E., 2012: The palm squirrel in coconut plantations: ecosystem services by therophily. Mammalia, 76, 2. DOI: 10.1515/mamma-lia-2011-0073/html.
  17. Chakravarti, S., 2001: The cornea through the eyes of knockout mice. Exp. Eye Res., 73, 4, 411–9. Available at https://linkinghub.elsevier.com/retrieve/pii/S0014483501910553.
  18. Cholkar, K., Dasari., S. R., Pal, D., Mitra, A. K., 2013: Eye: Anatomy, physiology and barriers to drug delivery. In Ocular Transporters and Receptors. 1–36. Available at https://link-inghub.elsevier.com/retrieve/pii/B9781907568862500010
  19. Coker, O. M., Jubril, A. J., Isong, O. M., Omonona, A. O., 2020: Internal and external morphometry of Thomas’s rope squirrel (Funisciurus anerythrus) and Gambian sun squirrel (Heliosciurus gambianus) in Ibadan, Nigeria. Anim. Res. Int., 17, 2, 3747–3760. Available at https://www.ajol.info/index.php/ari/article/view/199339.
  20. Coker, O. M., Osaiyuwu, O. H., Isong, O. M., 2020: Genetic variations in Thomas’s Rope squirrel (Funisciurus anerythrus) and Gambian Sun squirrel (Heliosciurus gambianus) Ibadan, Nigeria, using allozyme markers. Genet. Biodivers. J., 5, 1, 4–11. Available at https://journals.univ-tlemcen.dz/GABJ/index.php/GABJ/article/view/158.
  21. Collin, S. P., Collin, H. B., 1998: A comparative study of the corneal endothelium in vertebrates. Clin. Exp. Optom., 81, 6, 245–254. DOI: 10.1111/j.1444-0938.1998.tb06744.x.
  22. Davis, F. A., 1929: The anatomy and histology of the eye and orbit of the rabbit. Trans. Am. Ophthalmol. Soc., 27, 400.2–441. Available at http://www.ncbi.nlm.nih.gov/pubmed/16692841.
  23. Davis, K., Carter, R., Tully, T., Negulescu, I., Storey, E., 2015: Comparative evaluation of aqueous humour viscosity. Vet. Ophthalmol., 18, 1, 50–8. DOI: 10.1111/vop.12145.
  24. Dogiel, A. S. 1895: Die Retina der Vögel. Arch. für Mikroskopische Anat., 44, 1, 622–648. Available at http://link.springer.com/10.1007/BF02934032.
  25. Doi, M., Imatani, H., Sasoh, M., Uji, Y., Yamamura, H., 1994: Displaced retinal ganglion cells in the Chinese hamster. Jpn. J. Ophthalmol., 38, 2, 139–143. Available at http://www.ncbi.nlm.nih.gov/pubmed/7967204.
  26. Dräger, U. C., Olsen, J. F., 1980: Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J. Comp. Neurol., 191, 3, 383–412. DOI: 10.1002/cne.901910306.
  27. Duke-Elder, S., 1958: The eye in evolution. In System of Ophthalmology, 19 Volume Set. London, Henry Kimpton, 14392 pp.
  28. Duncan, R. D., Jenkins, S. H., 1998: Use of visual cues in foraging by a diurnal herbivore, Belding’s ground squirrel. Can. J. Zool., 76, 9, 1766–1770. DOI: 10.1139/z98-119.
  29. Fatt, I., Weissman, B. A., 2013: Physiology of the Eye: An Introduction to the Vegetative Functions. Elsevier Science, 517 pp. Available at https://www.everand.com/book/282595670/Physiology-of-the-Eye-An-Introduction-to-the-Vegetative-Functions.
  30. Fitch, H. S., 1948: Ecology of the California ground squirrel on grazing lands. Am. Midl. Nat., 39, 3, 513. Available at https://www.jstor.org/stable/2421524?origin=crossref.
  31. Fitzgibbon, C. D., Mogaka, H., Fanshawe, J. H., 1995: Subsistence hunting in Arabuko-Sokoke forest, Kenya, and its effects on mammal populations. Conserv. Biol., 9, 5, 1116–1126. DOI: 10.1046/j.1523-1739.1995.9051085.x-i1.
  32. Gabriel, L. A. R., Wang, L. W., Bader, H., Ho, J. C., Majors, A. K., Hollyfield, J. G., et al., 2012: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest. Ophthalmol. Vis. Sci., 53, 1, 461–469. Available at http://www.ncbi.nlm.nih.gov/pubmed/21989719.
  33. Galindo-Romero, C., Avilés-Trigueros, M., Jiménez-López, M., Valiente-Soriano, F. J., Salinas-Navarro, M., Nadal-Nicolás, F., et al., 2011: Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp. Eye Res., 92, 5, 377–387. Available at https://linkinghub.elsevier.com/retrieve/pii/S001448351100042X.
  34. Guttenplan, K. A., Stafford, B. K., El-Danaf, R. N., Adler, D. I., Münch, A. E., Weigel, M. K., et al., 2020: Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell. Rep., 31, 12, 107776. Available at https://linkinghub.elsevier.com/retrieve/pii/S2211124720307567.
  35. Hall, M. I., 2008: Comparative analysis of the size and shape of the lizard eye. Zoology (Jena), 111, 1, 62–75. Available at https://linkinghub.elsevier.com/retrieve/pii/S0944200607000785.
  36. Hayashi, S., Osawa, T., Tohyama, K., 2002: Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians. J. Morphol., 254, 3, 247–258. DOI: /10.1002/jmor.10030.
  37. Howell, G. R., Libby, R. T., Jakobs, T. C., Smith, R. S., Phalan, F. C., Barter, J. W., et al., 2007: Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell. Biol., 179, 7, 1523–1537. Available at http://www.ncbi.nlm.nih.gov/pubmed/18158332.
  38. Ikpegbu, E., Nlebedum, U., Ibe, C., 2014: The kidney and adrenal gland of the African palm squirrel Epixerus ebii: A microanatomical observation. Rev. Fac. Ciencias. Vet., 55, 2, 60–67. Available at https://www.redalyc.org/pdf/3731/373139085001.pdf.
  39. Ikyaagba, E. T., Alarape, A. A., Omifolaji, J. K., Uloko, I. J., Jimoh, O. S., 2020: Mammal richness and diversity in tropical ecosystem: The role of protected area in conserving vertebrate fauna, Oban Hill’s region. J. Agric. Sustain., 13, 1–20. Available at https://infinitypress.info/index.php/jas/article/view/1975.
  40. Jackson, P., Blythe, D., 2013: Immunohistochemical techniques. In Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques. 7th edn., Elsevier, 381–426. Available at https://linkinghub.elsevier.com/retrieve/pii/B9780702042263000184.
  41. Jacobs, G. H., Tootell, R. B. H., Fisher, S. K., Anderson, D. H., 1980: Rod photoreceptors and scotopic vision in ground squirrels. J. Comp. Neurol., 189, 1, 113–125. DOI: 10.1002/cne.901890107.
  42. Jakus, M. A., 1954: Studies on the cornea. I. The fine structure of the rat cornea. Am. J. Ophthalmol., 38, 1, 2, 40–53. Available at http://www.ncbi.nlm.nih.gov/pubmed/13180617.
  43. Jeffery, G., Evans, A., Albon, J., Duance, V., Neal, J., Dawidek, G., 1995: The human optic nerve: Fascicular organisation and connective tissue types along the extra-fascicular matrix. Anat. Embryol. (Berl)., 191, 6, 491–502. Available at http://link.springer.com/10.1007/BF00186739.
  44. Johnson, P. T., Geller, S. F., Reese, B. E., 1998: Distribution, size and number of axons in the optic pathway of ground squirrels. Exp. Brain Res., 118, 1, 93–104. Available at http://link.springer.com/10.1007/s002210050258.
  45. Kingdon, J., 1997: The Kingdon Field Guide to African Mammals. Academic Press, San Diego, California. Available at http://www.rhinoresourcecenter.com/pdf_files/130/1303945154.pdf.
  46. Koskela, T. K., Reiss, G. R., Brubaker, R. F., Ellefson, R. D., 1989: Is the high concentration of ascorbic acid in the eye an adaptation to intense solar irradiation? Invest. Ophthalm. Vis. Sci., 30, 10, 2265–2267. Available at http://www.ncbi.nlm.nih.gov/pubmed/2793364.
  47. Kronfeld-Schor, N., Dayan, T., Jones, M. E., Kremer, I., Mandelik, Y., Wollberg, M., et al., 2001: Retinal structure and foraging microhabitat use of the golden spiny mouse (Acomys russatus). J. Mammal., 82, 4, 1016–1025. Available at https://academic.oup.com/jmammal/article/82/4/1016-1025/2372725.
  48. Kryger, Z., Galli-Resta, L., Jacobs, G. H., Reese, B. E., 1998: The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci., 15, 4, 685–691. Available at https://www.cambridge.org/core/product/identifier/S0952523898154081/type/journal_article.
  49. Layton, C., Bancroft, J. D., 2013: Carbohydrates. In: Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques (Internet). 7th edn., Churchill Livingstone, UK, 215–238. Available at https://link-inghub.elsevier.com/retrieve/pii/B9780702042263000123.
  50. Lluch, S., Ventura, J., López-Fuster, M. J., 2008: Eye morphology in some wild rodents. Anat. Histol. Embryol., 37, 1, 41–51. DOI: 10.1111/j.1439-0264.2007.00796.x.
  51. Long, K. O., Fisher, S. K., 1983: The distributions of photo-receptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J. Comp. Neurol., 221, 3, 329–340. DOI: 10.1002/cne.902210308.
  52. Lurz, P., 2011: Squirrels and relatives II: Ground squirrels. In Grzimek’s Animal Life Encyclopedia: Mammals, 16, 143–161. Available at https://brookslibraryvt.org/wp-content/uploads/2021/02/Squirrels_and_Relatives_II_Gro.pdf.
  53. Malinin, G. I., Bernstein, H., 1979: Histochemical demonstration of glycogen in corneal endothelium. Exp. Eye Res., 28, 4, 381–385. Available at https://linkinghub.elsevier.com/retrieve/pii/0014483579901131.
  54. McFarland, W. N., 1991: The visual world of coral reef fishes. In The Ecology of Fishes on Coral Reefs. Academic Press, San Diego, California, 16–38. Available at https://www.vliz.be/en/imis?module=ref&refid=9173.
  55. Mescher, A. L., 2016: Junqueira’s Basic Histology: A Color Atlas and Text. 14th edn., Basic histology: A colour atlas and text. McGraw-Hill Education, 573 pp. Available at https://www.academia.edu/37006818/Junqueiras_Basic_Histology_Text_and_Atlas_14th_Edition.
  56. Misantone, L. J., Gershenbaum, M., Murray, M., 1984: Viability of retinal ganglion cells after optic nerve crush in adult rats. J. Neurocytol., 13, 3, 449–465. Available at http://link.springer.com/10.1007/BF01148334.
  57. Morgan, W. H., Yu, D. Y., Alder, V. A., Cringle, S. J., Cooper, R. L., House, P. H., et al., 1998: The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest, Ophthalmol. Vis. Sci., 39, 8, 1419–1428. Available at http://www.ncbi.nlm.nih.gov/pubmed/9660490.
  58. Müller, L. J., Pels, L., Vrensen, G. F., 1995: Novel aspects of the ultrastructural organization of human corneal keratocytes. Invest. Ophthalmol. Vis. Sci., 36, 13, 2557–2567. Available at http://www.ncbi.nlm.nih.gov/pubmed/7499078.
  59. Nadal-Nicolás, F. M., Jiménez-López, M., Salinas-Navarro, M., Sobrado-Calvo, P., Vidal-Sanz, M., Agudo-Barriuso, M., 2017: Microglial dynamics after axotomy-induced retinal ganglion cell death. J. Neuroinflam., 14, 1, 218. Available at https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0982-7.
  60. Nadal-Nicolás, F. M., Jiménez-López, M., Sobrado-Calvo, P., Nieto-López, L., Cánovas-Martínez, I., Salinas-Navarro, M., et al., 2009: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest. Ophthalmol. Vis. Sci., 50, 8, 3860–3868. Available at http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.08-3267.
  61. Nadal-Nicolas, F. M., Salinas-Navarro, M., Jiménez-López, M., Sobrado-Calvo, P., Villegas-Pérez, M. P., Vidal-Sanz, M., et al., 2014: Displaced retinal ganglion cells in albino and pigmented rats. Front. Neuroanat., 8, 99. Available at http://www.ncbi.nlm.nih.gov/pubmed/25339868.
  62. Nadal-Nicolás, F. M., Sobrado-Calvo, P., Jiménez-López, M., Vidal-Sanz, M., Agudo-Barriuso, M., 2015: Long-term effect of optic nerve axotomy on the retinal ganglion cell layer. Invest. Ophthalmol. Vis. Sci., 56, 10, 6095–6112. Available at http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-17195.
  63. Nadal-Nicolás, F., Miyagishima, K., Li, W., 2022: In search for the “idyllic” animal model to evaluate ocular pathologies and translate new therapies to improve human health. Neural Regen. Res., 17, 12, 2697. Available at http://www.ncbi.nlm.nih.gov/pubmed/35662215.
  64. Nautscher, N., Bauer, A., Steffl, M., Amselgruber, W. M., 2016: Comparative morphological evaluation of domestic animal cornea. Vet. Ophthalmol., 19, 4, 297–304. DOI: 10.1111/vop.12298.
  65. Omifolaji, J. K., Teresa, I. E., Alarape, A. A., Ojo, V. A., Modu, M., Lateef, L. F., et al., 2020: Estimates of Demidoff’s galago (Galagoides demidovii) density and abundance in a changing landscape in the Oban hills, Nigeria. Hystrix, Ital. J. Mammal., 2, 31, 117–122. Available at http://www.italian-journal-of-mammalogy.it/Estimates-of-Demidoff-sgalago-Galagoides-demidovii-density-and-abundance-in-a-changing,128298,0,2.html#.
  66. Omonona, A., Ademola, I., Odeniran, P., Jubril, A., Asenowo, O., Olagbenro, O., 2020: Parasitic burden of African squirrels captured in a Nigerian University community. Niger. J. Parasitol., 41, 2. Available at https://www.ajol.info/index.php/njpar/article/view/200107.
  67. Parrilla-Reverter, G., Agudo, M., Nadal-Nicolás, F., Alarcón-Martínez, L., Jiménez-López, M., Salinas-Navarro, M., et al., 2009: Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study. Vision Res., 49, 23, 2808–2825. Available at https://linkinghub.elsevier.com/retrieve/pii/S0042698909003794.
  68. Peter-Ajuzie, I. K., Nwaogu, I. C., Majesty-Alukagberie, L. O., Ajaebili, A. C., Farrag, F. A., Kassab, M. A., Abumandour, M., 2022: Ocular morphology of the fruit bat, Eidolon helvum, and the optical role of the choroidal papillae in the megachiropteran eye: A novel insight. Folia Morphologica, 81, 3, 715–722. DOI: 10.5603/FM.a2021.0072.
  69. Peter-Ajuzie, I. K., Nwaogu, I. C., Igwebuike, U. M., 2019: Anatomical assessment of the eye of the African grass-cutter (Thryonomys swinderianus). J. Appl. Life Sci. Int., 1–8. Available at https://journaljalsi.com/index.php/JALSI/article/view/365.
  70. Ramón y Cajal, S., 1972: The Structure of the Retina. Thorpe, S., Glickstein, M., translators. Thomas, Springfield, Illinois, 196 pp.
  71. Rodriguez-Ramos, Fernandez J., Dubielzig, R. R., 2013: Ocular comparative anatomy of the family Rodentia. Vet. Ophthalmol., 16 Suppl. 1, 94–99. Available at http://www.ncbi.nlm.nih.gov/pubmed/23734597.
  72. Rosevear, D. R., 1969: The Rodents of West Africa. London: British Museum (Natural History), 604 pp. Available at https://books.google.com.ng/books/about/The_Rodents_of_West_Africa.html?id=wUEgSgAACAAJ&redir_esc=y.
  73. Ruiz-Ederra, J., García, M., Hernández, M., Urcola, H., Hernández-Barbáchano, E., Araiz, J., et al., 2005: The pig eye as a novel model of glaucoma. Exp. Eye Res., 81, 5, 561–569. Available at http://www.ncbi.nlm.nih.gov/pubmed/15949799.
  74. Saadi-Brenkia, O., Hanniche, N., Lounis, S., 2018: Microscopic anatomy of ocular globe in diurnal desert rodent Psammomys obesus (Cretzschmar, 1828). J. Basic Appl. Zool., 79, 1, 43. Available at https://basicandappliedzoology.springeropen.com/articles/10.1186/s41936-018-0056-0.
  75. Sánchez-Migallón, M. C., Valiente-Soriano, F. J., Nadal-Nicolás, F. M., Vidal-Sanz, M., Agudo-Barriuso, M., 2016: Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: Delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest. Ophthalmol. Vis. Sci., 57, 1, 81–93. Available at http://iovs.arvojournals.org/article.aspx-?doi=10.1167/iovs.15-17841.
  76. Scott, J. E., Bosworth, T.R., 1990: A comparative biochemical and ultrastructural study of proteoglycan-collagen interactions in corneal stroma. Functional and metabolic implications. Biochem. J., 270, 2, 491–497. Available at https://port-landpress.com/biochemj/article/270/2/491/26625/A-comparative-biochemical-and-ultrastructural.
  77. Seebeck, J. H., 1989: Scuiridae. In Walton, D., Richardson, B.: Mammalia, Fauna of Australia Series. Canberra, Australia: Australian Government Publishing Service; 1–13. Available at https://web.archive.org/web/20150117031835/ http://www.scarysquirrel.org/vacation/australia/fauna.pdf.
  78. Shorten, M., 1954: Squirrels. Collins, London, 212 pp.
  79. Sondereker, K. B., Stabio, M. E., Jamil, J. R., Tarchick, M. J., Renna, J. M., 2018: Where you cut matters: A dissection and analysis guide for the spatial orientation of the mouse retina from ocular landmarks. J. Vis. Exp., 138. Available at https://www.jove.com/t/57861/where-you-cut-matters-dissection-analysis-guide-for-spatial.
  80. Sun, D., Lye-Barthel, M., Masland, R. H., Jakobs, T. C., 2009: The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J. Comp. Neurol., 516, 1, 1–19. DOI: 10.1002/cne.22058.
  81. Szél, A., Röhlich, P., 1988: Four photoreceptor types in the ground squirrel retina as evidenced by immunocytochemistry. Vision Res., 28, 12, 1297–1302. Available at https://link-inghub.elsevier.com/retrieve/pii/0042698988900600.
  82. Thorington, R. W., Thorington, J. R. W., Ferrell, K. E., 2007: Squirrels: The animal answer guide. J. Mammal., 88, 3, 824–824. DOI: 10.1644/06-MAMM-R-397R.1.
  83. Vajzovic, L., Hendrickson, A. E., O’Connell, R. V., Clark, L. A., Tran-Viet, D., Possin, D., et al., 2012: Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am. J. Ophthalmol., 154, 5, 779–789.e2. Available at http://www.ncbi.nlm.nih.gov/pubmed/22898189.
  84. Van Hooser, S. D., Nelson, S. B., 2006: The squirrel as a rodent model of the human visual system. Vis. Neurosci., 23, 5, 765–778. Available at https://www.cambridge.org/core/product/identifier/S0952523806230098/type/journal_article
  85. Villegas-Pérez, M. P., Vidal-Sanz, M., Rasminsky, M., Bray, G. M., Aguayo, A. J., 1993: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J. Neurobiol., 24, 1, 23–36. DOI: 10.1002/neu.480240103.
  86. Walls, G. L., 1963: The Vertebrate Eye and its Adaptative Radiation. Hafner Publishing Co., New York, London, 785 pp. Available at https://ia802605.us.archive.org/35/items/vertebrateeyeits00wall/vertebrateeyeits00wall.pdf.
  87. Wasilewa, P., Hockwin, O., Korte, I., 1976: Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol, 199, 2, 115–120. Available at http://www.ncbi.nlm.nih.gov/pubmed/1083690.
  88. West, R. W., Dowling, J. E., 1975: Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. J. Comp. Neurol., 159, 4, 439–460. DOI: 10.1002/cne.901590402.
  89. Woolf, D., 1956: A comparative cytological study of the ciliary muscle. Anat. Rec., 124, 2, 145–163. Available at http://www.ncbi.nlm.nih.gov/pubmed/13302815.
  90. Xiao, X., Zhao, T., Miyagishima, K. J., Chen, S., Li, W., Nadal-Nicolás, F. M., 2021: Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. Lab. Invest., 101, 9, 1289–1303. Available at https://www.nature.com/articles/s41374-021-00637-y.
DOI: https://doi.org/10.2478/fv-2024-0001 | Journal eISSN: 2453-7837 | Journal ISSN: 0015-5748
Language: English
Page range: 1 - 14
Submitted on: Oct 6, 2023
Accepted on: Jan 31, 2024
Published on: Mar 22, 2024
Published by: The University of Veterinary Medicine and Pharmacy in Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 James O. Olopade, Olanrewaju I. Fatola, Taidinda T. Gilbert, Oluwabusayo R. Folarin, Adedunsola A. Obasa, Jude I. Abeje, Munachimso K. Njasi, Ejiro O. Ighorodje, Chizubelu I. Omile, Kehinde I. Adedokun, published by The University of Veterinary Medicine and Pharmacy in Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.