References
- 1. Ahmad, I., Malak, H. A., Abulreesh, H. H., 2021: Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Res., 27, 101–111. DOI: 10.1016/j.jgar.2021.08.001.
- 2. Anadón, A., Ares, I., Martínez-Larrañaga, M. R., Martínez, M. A., 2019: Prebiotics and probiotics in feed and animal health. Nutraceuticals in Veterinary Medicine, 261–285. DOI: 10.1007/978-3-030-04624-8_19.
- 3. Anand, U., Reddy, B., Kumar Singh, V., Kishore Singh, A., Kumar Kesari, K., Tripathi, P., et al., 2021: Potential environmental and human health risks caused by antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs) and emerging contaminants (ECs) from municipal solid waste (MSP) landfill. Antibiotics (Basel), 10, 4, 374. DOI: 10.3390/antibiotics10040374.
- 4. Arbab, S., Ullah, H., Wang, W., Li, K., Akbar, A., Zhang, J., 2021: Isolation and identification of infection-causing bacteria in dairy animals and determination of their antibiogram. J. Food Qual., 4, 19. DOI: 10.1155/2021/2958304.
- 5. Bag, M. A. S., Khan, M. S. R., Sami, M. D. H., Begum, F., Islam, M. S., Rahman, M. et al., 2021: Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi J. Biol. Sci., 28, 11, 6317–6323. DOI: 10.1016/j.sjbs.2021.06.099.
- 6. Bello, F., Echevarría, L., 2022: Evaluation of antibiotic-resistant bacteria and physicochemical parameters in ground-water, impacted by dairy farms in Hatillo, Puerto Rico. PSM Biol. Res., 8, 1, 9–27.
- 7. Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., Sims, R., 2019: The future challenges of food and agriculture: An integrated analysis of trends and solutions. Sustainability, 11, 1, 222. DOI: 10.3390/su11010222.
- 8. Checcucci, A., Trevisi, P., Luise, D., Modesto, M., Blasioli, S., Braschi, I., Mattarelli, P., 2020: Exploring the animal waste resistome: The spread of antimicrobial resistance genes through the use of livestock manure. Front. Microbiol., 11, 1416. DOI: 10.3389/FMICB.2020.01416/FULL.
- 9. Chopra, I., Roberts, M., 2001: Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 65, 232–260. DOI: 10.1128/MMBR.65.2.232-260.2001.
- 10. Chowdhury, S., Ghosh, S., Aleem, M. A., Parveen, S., Islam, M. A., Rashid, M. M., et al., 2021: Antibiotic usage and resistance in food animal production: What have we learned from Bangladesh? Antibiotics, 10, 9, 10332. DOI: 10.3390/antibiotics10091032.
- 11. Collignon, P. J., McEwen, S. A., 2019: One health — its importance in helping to better control antimicrobial resistance. Trop. Med. Inf. Dis., 4, 1, 22. DOI: 10.3390/tropicalmed4010022.
- 12. Ekumankama, O., Ezeoha, A., Uche, C., 2020: The role of multinational corporations in local dairy value chain development: Case of Friesland Campina WAMCO (FCW) in Nigeria. Int. Food Agribus. Manag. Rev., 23, 55–69. DOI: 10.22434/IFAMR2018.0108.
- 13. Falowo, A. B., Akimoladun, O. F., 2019: Veterinary drug residues in meat and meat products: Occurrence, detection and implications. Vet. Med. Pharmaceut., 3, 194.
- 14. Fernandes, V., Cunha, E., Nunes, T., Silva, E., Tavares, L., Mateus, L., Oliveira, M., 2022: Antimicrobial resistance of clinical and commensal Escherichia coli canine isolates: Profile characterization and comparison of antimicrobial susceptibility results according to different guidelines. Vet. Sci., 9, 6, 284. DOI: 10.3390/vetsci9060284.
- 15. Food and Agriculture Organization (FAO), 2017: Nigeria Agriculture at a Glance. Available at https://www.fao.org/nigeria/fao-in-nigeria/nigeria-at-a-glance/en/. Accessed 15th January, 2023.
- 16. Gbarakoro, S. L., Orubite, K. O., Nyone, L., 2021: Characterization of bacteria isolates on surface of corroded aluminium coupon. J. Mat. Sci. Res. Rev., 8, 4, 185–192. DOI: 10.56201/ijccp.v8.no1.2022.pg19.27.
- 17. Higgins, J. A., Jenkins, M. C., Shelton, D. R., Fayer, R., Karns, J. S., 2001: Rapid extraction of DNA from Escherichia coli and Cryptosporidium parvum for use in PCR. Appl. Environ. Microb., 67, 11, 5321–5324. DOI: 10.1128/AEM.67.11.5321-5324.2001.
- 18. Jack, A. A., Adegbeye, M. J., Reddy, P. R. K., Elghandour, M. M., Salem, A. Z. M., Adewumi, M. K., 2022: Ruminant productivity among smallholders in a changing climate: Adaptation strategies. In Handbook of Climate Change Mitigation and Adaptation. Cham, Springer Int. Publ., 3047–3086.
- 19. Kadlec, K., von Czapiewski, E., Kaspar, H., Wallmann, J., Michael, G. B., Steinacker, U., Schwarz, S., 2011: Molecular basis of sulfonamide and trimethoprim resistance in fish-pathogenic Aeromonas isolates. Appl. Environ. Microbiol., 77, 7147–7150. DOI: 10.1128/AEM.00560-11.
- 20. Li, Q., Chang, W., Zhang, H., Hu, D., Wang, X., 2019: The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from waste-water treatment plants. Front. Microbiol., 10, 633. DOI: 10.3389/FMICB.2019.00633/FULL.
- 21. Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L., 2021: Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health, 3, 1, 32–38. DOI: 10.1016/j.bsheal.2020.09.004.
- 22. Manafi, M., 2000: New developments in chromogenic and fluorogenic culture media. Int. J. Food Microbiol., 60, 2–3, 205–218. DOI: 10.1016/S0168-1605(00)00312-3.
- 23. Mshana, S., Sindato, C., Matee, M., Leonard, E. G. M., 2021: Antimicrobial use and resistance in agriculture and food production systems in Africa: A systematic review. Antibiotics, 10, 8, 976. DOI: 10.3390/antibiotics10080976.
- 24. Ng, L. K., Martin, I., Alfa, M., Mulvey, M., 2001: Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes, 15, 4, 209–215. DOI: 10.1006/mcpr.2001.0363.
- 25. Oyedeji, A. B., Green, E., Jeff-Agboola, Y. A., Olanbiwoninu, A. A., Areo, E., Martins, I., et al., 2023: Presence of pathogenic microorganisms in fermented foods. In Indigenous Fermented Foods for the Tropics. Academic Press, 519–537. DOI: 10.1016/B978-0-323-98341-9.00037-2.
- 26. Roberts, M. C., 2005: Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett., 245, 2, 195–203.
- 27. Sheykhsaran, E., Baghi, H. B., Barhaghi, M. H. S., Ghotassiou, R.: An overview of tetracyclines and related resistance mechanisms. Rev. Med. Microbiol., 30, 69–75. DOI: 10.1097/MRM.0000000000000154.
- 28. Vercelli, C., Gambino, G., Amadori, M., Re, G., 2022: Implications of veterinary medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet. Anim. Sci., 16, 100249. DOI: 10.1016/j.vas.2022.100249.
- 29. Virto, M., Santamarina-García, G., Amores, G., Hernández, I., 2022: Antibiotics in dairy production: Where is the problem? Dairy, 3, 541–564. DOI: 10.3390/DAIRY3030039.
- 30. Worldometers, 2019: Nigeria population. In World Population Prospects: The 2019 Revision. Available at https://www.worldometers.info/world-population/nigeria-population/.
- 31. Zainab, S. M., Junaid, M., Xu, N., Malik, R. N., 2020: Antibiotics and antibiotic-resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res., 187, 116455. DOI: 10.1016/j.watres.2020.116455.
- 32. Zhang, J., Wang, J., Jin, J., Li, X., Zhang, H., Shi, X., Zhao, Ch., 2022: Prevalence, antibiotic resistance, and enterotoxin genes of Staphylococcus aureus isolated from milk and dairy products worldwide: A systematic review and meta-analysis. Food Res. Int., 162 (Pt A), 111969. DOI: 10.1016/j.foodres.2022.111969.
