References
- 1. Abbott, A., 2006: Lyme disease: Uphill struggle. Nature, 439, 524–525. DOI: 10.1016/c2016-0-01430-4.10.1016/C2016-0-01430-4
- 2. Aguero-Rosenfeld, M., Wang, G., Schwartz, I., Wormser, G., 2005: Diagnosis of Lyme Borreliosis. Clin. Microbiol. Rev., 18, 484–509. DOI: 10.1128/CMR.18.3.484-509.2005.10.1128/CMR.18.3.484-509.2005119597016020686
- 3. Anderson, C., Brissette, C. A., 2021: The brilliance of Borrelia: Mechanisms of host immune evasion by Lyme disease-causing spirochetes. Pathogens, 10, 1–17. DOI: 10. 3390/pathogens10030281.10.3390/pathogens10030281800105233801255
- 4. Appel, M. J. G., Allan, S., Jacobson, R. H., Lauderdale, T. L., Chang, Y. F., Shin, S. J., et al., 1993: Experimental lyme disease in dogs produces arthritis and persistent infection. J. Infect. Dis., 167, 651–654. DOI: 10.1093/infdis/167.3.651.10.1093/infdis/167.3.6518440936
- 5. Barbour, A. G., 2018: Borreliaceae. In Whitman, W. B., et al.: Bergey’s Manual of Systematics of Archaea and Bacteria. John Wiley and Sons, Inc., Hoboken, NJ, 1–9.
- 6. Barbour, A. G., Gupta, R. S., 2021: The family Borreliaceae (Spirochaetales), a diverse group in two genera of tick-borne spirochetes of mammals, birds, and reptiles. J. Med. Entomol., 58, 1513–1524. DOI: 10.1093/jme/tjab055.10.1093/jme/tjab05533903910
- 7. Barth, C., Straubinger, R. K., Krupka, I., Müller, E., Sauter-Louis, C., Hartmann, K., 2014: Comparison of different diagnostic assays for the detection of Borrelia burgdorferi-specific antibodies in dogs. Vet. Clin. Pathol., 43, 496–504. DOI: 10.1111/vcp.12213.10.1111/vcp.1221325366257
- 8. Bhide, M., Trávniček, M., Čurlík, J., Štefančíková, A., 2004: The importance of dogs in eco-epidemiology of Lyme borreliosis: A review. Vet. Med., 49, 135–142. DOI: 10.17221/5687-VETMED.10.17221/5687-VETMED
- 9. Bjurman, N. K., Bradet, G., Lloyd, V. K., 2016: Lyme disease risk in dogs in New Brunswick. Can. Vet. J., 57, 981–984.
- 10. Branda, J. A., Body, B. A., Boyle, J., Branson, B. M., Dattwyler, R. J., Fikrig, E., et al., 2018: Advances in serodiagnostic testing for Lyme disease are at hand. Clin. Infect. Dis., 66, 1133–1139. DOI: 10.1093/cid/cix943.10.1093/cid/cix943601907529228208
- 11. Bruckbauer, H. R., Preac-Mursic, V., Fuchs, R., Wilske, B., 1992: Cross-reactive proteins of Borrelia burgdorferi. Eur. J. Clin. Microbiol. Infect. Dis., 11, 224–232. DOI: 10. 1007/BF02098084.10.1007/BF020980841597198
- 12. Burgdorfer, W., Barbour, A., Hayes, S., Benach, J., Grunwaldt, E., Davis, J., 1982: Lyme disease – A tick-borne spirochetosis ? Science, 216, 1317–1319. DOI: 10.1126/science. 7043737.10.1126/science.7043737
- 13. Companion Animal Parasite Council, 2022: Lyme disease – prevalence map. Available at https://capcvet.org/maps/#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023.
- 14. Carlos, G., dos Santos, F. P., Fröehlich, P. E., 2020: Canine metabolomics advances. Metabolomics, 16, 1–19. DOI: 10. 1007/s11306-020-1638-7.
- 15. Centers for Disease Control and Prevention, 2022: Lyme disease: Data and surveillance. Available at https://capcvet.org/maps#/2022/all-year/lyme-disease/dog/united-states. Accessed January 31, 2023.
- 16. Chomel, B., 2015: Lyme disease. Rev. Sci. Tech., 34, 569–576. DOI: 10.20506/rst.34.2.2385.10.20506/rst.34.2.238526601462
- 17. Chou, J., Wünschmann, A., Hodzic, E., Borjesson, D. L., 2006: Detection of Borrelia burgdorferi DNA in tissues from dogs with presumptive Lyme borreliosis. J. Am. Vet. Med. Assoc., 229, 1260–1265. DOI: 10.2460/javma.229.8.1260.10.2460/javma.229.8.126017042727
- 18. Collares-Pereira, M., Couceiro, S., Franca, I., Kurten-bach, K., Schäfer, S. M., Vitorino, L., et al., 2004: First isolation of Borrelia lusitaniae from a human patient. J. Clin. Microbiol., 42, 1316–1318. DOI: 10.1128/JCM.42.3.1316-1318.2004.10.1128/JCM.42.3.1316-1318.200435681615004107
- 19. Comstedt, P., Schüler, W., Meinke, A., Lundberg, U., 2017: The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLOS ONE, 12, 1–13. DOI: 10.1371/journal.pone.0184357.10.1371/journal.pone.0184357558118328863166
- 20. Cutler, S. J., Rudenko, N., Golovchenko, M., Cramaro, W. J., Kirpach, J., Savic, S., et al., 2017: Diagnosing borreliosis. Vector-Borne Zoonotic Dis., 17, 2–11. DOI: 10.1089/vbz.2016.1962.10.1089/vbz.2016.196228055580
- 21. Dai, X., Shen, L., 2022: Advances and trends in omics technology development. Front. Med., 9, 1–25. DOI: 10.3389/fmed.2022.911861.10.3389/fmed.2022.911861928974235860739
- 22. Dattwyler, R. J., Arnaboldi, P. M., 2014: Editorial commentary: Comparison of Lyme disease serologic assays and Lyme specialty laboratories. Clin. Infect. Dis., 59, 1711–1713. DOI: 10.1093/cid/ciu705.10.1093/cid/ciu70525182243
- 23. Delgado, S., Cármenes, P., 1995: Seroepidemiological survey for Borrelia burgdorferi (Lyme disease) in dogs from northwestern of Spain. Eur. J. Epidemiol., 11, 321–324. DOI: 10.1007/BF01719437.10.1007/BF017194377493665
- 24. Dolange, V., Simon, S., Morel, N., 2021: Detection of Borrelia burgdorferi antigens in tissues and plasma during early infection in a mouse model. Sci. Rep., 11, 1–13. DOI: 10. 1038/s41598-021-96861-z.10.1038/s41598-021-96861-z840566034462491
- 25. Embers, M. E., Narasimhan, S., 2013: Vaccination against Lyme disease: Past, present, and future. Front. Cell. Infect. Microbiol., 3, 1–15. DOI: 10.3389/fcimb.2013.00006.10.3389/fcimb.2013.00006356983823407755
- 26. Feng, J., Shi, W., Zhang, S., Sullivan, D., Auwaerter, P. G., Zhang, Y., 2016: A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol., 7, 1–12. DOI: 10.3389/fmicb.2016.00743.10.3389/fmicb.2016.00743487677527242757
- 27. Feng, J., Auwaerter, P. G., Zhang, Y., 2015: Drug combinations against Borrelia burgdorferi persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLOS ONE, 10, 1–15. DOI: 10.1371/journal. pone.0117207.10.1371/journal.pone.0117207
- 28. Galluzzo, P., Grippi, F., Di Bella, S., Santangelo, F., Sciortino, S., Castiglia, A., et al., 2020: Seroprevalence of Borrelia burgdorferi in stray dogs from southern Italy. Microorganisms, 8, 1–8. DOI: 10.3390/microorganisms8111688.10.3390/microorganisms8111688769207233142966
- 29. Gatellet, M., Vanderheyden, S., Abee, M., Adaszek, Ł., Varloud, M., 2019: A Suspected case of Lyme borreliosis in a dog from Belgium. Case Reports Vet. Med., 2019, 1–3. DOI: 10.1155/2019/3973901.10.1155/2019/3973901645886131049243
- 30. Gerber, B., Haug, K., Eichenberger, S., Reusch, C. E., Wittenbrink, M. M., 2009: Follow-up of Bernese Mountain dogs and other dogs with serologically diagnosed Borrelia burgdorferi infection: What happens to seropositive animals ? BMC Vet. Res., 5, 1–8. DOI: 10.1186/1746-6148-5-18.10.1186/1746-6148-5-18269714619426490
- 31. Gettings, J. R., Lopez, J. E., Krishnavahjala, A., Armstrong, B. A., Thompson, A. T., Yabsley, M. J., 2019: Antibodies to Borrelia turicatae in experimentally infected dogs cross-react with Borrelia burgdorferi serologic assays. J. Clin. Microbiol., 57. DOI: 10.1128/JCM.00628-19.10.1128/JCM.00628-19671189731270181
- 32. Golovchenko, M., Vancová, M., Clark, K., Oliver, J. H., Grubhoffer, L., Rudenko, N., 2016: A divergent spirochete strain isolated from a resident of the southeastern United States was identified by multilocus sequence typing as Borrelia bissettii. Parasites and Vectors, 9, 1–5. DOI: 10.1186/s13071-016-1353-4.10.1186/s13071-016-1353-4474311426846867
- 33. Goossens, H. A. T., Van den Bogaard, A. E., Nohlmans, M. K. E., 2001: Dogs as sentinels for human Lyme borreliosis in the Netherlands. J. Clin. Microbiol., 39, 844–848. DOI: 10.1128/JCM.39.3.844-848.2001.10.1128/JCM.39.3.844-848.20018783911230393
- 34. Guerra, M. A., Walker, E. D., Kitron, U., 2001: Canine surveillance system for Lyme borreliosis in Wisconsin and Northern Illinois: Geographic distribution and risk factor analysis. Am. J. Trop. Med. Hyg., 65, 546–552. DOI: 10.4269/ajtmh.2001.65.546.10.4269/ajtmh.2001.65.54611716112
- 35. Gupta, R. S., 2019: Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: Response to Margos’ et al. “The genus Borrelia reloaded” (PLOS ONE, 13,12, E0208432). PLOS ONE, 14, 1–22. DOI: 10.1371/journal.pone.0221397.10.1371/journal.pone.0221397671153631454394
- 36. Hovius, K. E., Stark, L. A. M., Bleumink-Pluym, N. M. C., van de Pol, I., Verbeek-de Kruif, N., Rijpkema, S. G. T., et al., 1999: Presence and distribution of Borrelia burgdorferi sensu lato species in internal organs and skin of naturally infected symptomatic and asymptomatic dogs, as detected by polymerase chain reaction. Vet. Q., 21, 54–58. DOI: 10.1080/01652176.1999.9694992.10.1080/01652176.1999.969499210321014
- 37. Hoxmeier, J. C., Fleshman, A. C., Broeckling, C. D., Prenni, J. E., Dolan, M. C., Gage, K. L., et al., 2017: Metabolomics of the tick-Borrelia interaction during the nymphal tick blood meal. Sci. Rep., 7, 1–11. DOI: 10.1038/srep44394.10.1038/srep44394534738628287618
- 38. Hutton, T., Goldstein, R. E., Njaa, B. L., Atwater, D. Z., Chang, Y. F., Simpson, K. W., 2008: Search for Borrelia burgdorferi in kidneys of dogs with suspected “Lyme nephritis”. J. Vet. Intern. Med., 22, 860–865. DOI: 10.1111/j.1939-1676.2008.0131.x.10.1111/j.1939-1676.2008.0131.x18564223
- 39. Izac, J. R., Camire, A. C., Earnhart, C. G., Embers, M. E., Funk, R. A., Breitschwerdt, E. B., et al., 2019: Analysis of the antigenic determinants of the OspC protein of the Lyme disease spirochetes: Evidence that the C10 motif is not immunodominant or required to elicit bactericidal antibody responses. Vaccine, 37, 2401–2407. DOI: 10.1016/j.vaccine. 2019.02.007.10.1016/j.vaccine.2019.02.007
- 40. Kalish, R. A., McHugh, G., Granquist, J., Shea, B., Ruthazer, R., Steere, A. C., 2001: Persistence of immunoglobulin M or immunoglobulin G antibody responses to Borrelia burgdorferi 10–20 years after active Lyme disease. Clin. Infect. Dis., 33, 780–785. DOI: 10.1086/322669.10.1086/32266911512082
- 41. Kenedy, M. R., Lenhart, T. R., Akins, D. R., 2012: The role of Borrelia burgdorferi outer surface proteins. FEMS Immunol. Med. Microbiol., 66, 1–19. DOI: 10.1111/j.1574-695X.2012.00980.x.10.1111/j.1574-695X.2012.00980.x342438122540535
- 42. Kilpatrick, A. M., Dobson, A. D. M., Levi, T., Salkeld, D. J., Swei, A., Ginsberg, H. S., et al., 2017: Lyme disease ecology in a changing world: Consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B Biol. Sci., 372, 1–15. DOI: 10.1098/rstb.2016.0117.10.1098/rstb.2016.0117541386928438910
- 43. Krämer, F., Hüsken, R., Krüdewagen, E. M., Deuster, K., Blagburn, B., Straubinger, R. K., et al., 2020: Prevention of transmission of Borrelia burgdorferi sensu lato and Ana-plasma phagocytophilum by Ixodes spp. ticks to dogs treated with the Seresto® collar (imidacloprid 10 % + flumethrin 4.5 %). Parasitol. Res., 119, 299–315. DOI: 10.1007/s00436-019-06394-8.10.1007/s00436-019-06394-8694203431734862
- 44. Krause, P. J., Foley, D. T., Burke, G. S., Christianson, D., Closter, L., Spielman, A., et al., 2006: Reinfection and relapse in early Lyme disease. Am. J. Trop. Med. Hyg., 75, 1090–1094. DOI: 10.4269/ajtmh.2006.75.1090.10.4269/ajtmh.2006.75.1090
- 45. Krupka, I., Straubinger, R. K., 2010: Lyme borreliosis in dogs and cats: Background, diagnosis, treatment and prevention of infections with Borrelia burgdorferi sensu stricto. Vet. Clin. North Am. Small Anim. Pract., 40, 1103–1119. DOI: 10.1016/j.cvsm.2010.07.011.10.1016/j.cvsm.2010.07.01120933139
- 46. Kybicová, K., Lukavská, A., Balátová, P., 2018: Lyme borreliosis – cultivation of Borrelia burgdorferi sensu lato (In Czech). Zprávy Cent. Epidemiol. Mikrobiol. (SZÚ Prague), 27, 113–115.
- 47. Lebech, A. M., Clemmensen, O., Hansen, K., 1995: Comparison of in vitro culture, immunohistochemical staining, and PCR for detection of Borrelia burgdorferi in tissue from experimentally infected animals. J. Clin. Microbiol., 33, 2328–2333. DOI: 10.1128/jcm.33.9.2328-2333.1995.10.1128/jcm.33.9.2328-2333.19952284047494022
- 48. Liang, F. T., Jacobson, R. H., Straubinger, R. K., Groot-ers, A., Philipp, M. T., 2000: Characterization of a Borrelia burgdorferi VlsE invariable region useful in canine Lyme disease serodiagnosis by enzyme-linked immunosorbent assay. J. Clin. Microbiol., 38, 4160–4166. DOI: 10.1128/jcm. 38.11.4160-4166.2000.10.1128/JCM.38.11.4160-4166.2000
- 49. Liang, F. T., Philipp, M. T., 1999: Analysis of antibody response to invariable regions of VlsE, the variable surface antigen of Borrelia burgdorferi. Infect. Immun., 67, 6702–6706. DOI: 10.1128/iai.67.12.6702-6706.1999.10.1128/IAI.67.12.6702-6706.19999708810569796
- 50. Little, S. E., Heise, S. R., Blagburn, B. L., Callister, S. M., Mead, P. S., 2010: Lyme borreliosis in dogs and humans in the USA. Trends Parasitol., 26, 213–218. DOI: 10.1016/j.pt. 2010.01.006.10.1016/j.pt.2010.01.006
- 51. Littman, M. P., Gerber, B., Goldstein, R. E., Labato, M. A., Lappin, M. R., Moore, G. E., 2018: ACVIM consensus update on Lyme borreliosis in dogs and cats. J. Vet. Intern. Med., 32, 887–903. DOI: 10.1111/jvim.15085.10.1111/jvim.15085598028429566442
- 52. Littman, M. P., Goldstein, R. E., Labato, M., Lappin, M. R., Moore, G. E., 2006: ACVIM small animal consensus statement on Lyme disease in dogs: Diagnosis, treatment, and prevention. J. Vet. Intern. Med., 20, 422–434. DOI: 10.1111/j. 1939-1676.2006.tb02880.x.10.1111/j.1939-1676.2006.tb02880.x
- 53. Liu, J., Drexel, J., Andrews, B., Eberts, M., Breitschwerdt, E., Chandrashekar, R., 2018: Comparative evaluation of 2 in-clinic assays for vector-borne disease testing in dogs. Top. Companion Anim. Med., 33, 114–118. DOI: 10.1053/j. tcam.2018.09.003.10.1053/j.tcam.2018.09.003
- 54. Liveris, D., Schwartz, I., McKenna, D., Nowakowski, J., Nadelman, R., DeMarco, J., et al., 2012: Comparison of five diagnostic modalities for direct detection of Borrelia burgdorferi in patients with early Lyme disease. Diagn. Microbiol. Infect. Dis., 73, 243–245. DOI: 10.1016/j.diagmicrobio.2012.03.026.10.1016/j.diagmicrobio.2012.03.026337784322571973
- 55. Lohr, B., Fingerle, V., Norris, D. E., Hunfeld, K. P., 2018: Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Crit. Rev. Clin. Lab. Sci., 55, 219–245. DOI: 10.1080/10408363.2018.1450353.10.1080/10408363.2018.145035329606016
- 56. Malloy, D. C., Nauman, R. K., Paxton, H., 1990: Detection of Borrelia burgdorferi using the polymerase chain reaction. J. Clin. Microbiol., 28, 1089–1093. DOI: 10.1128/jcm.28.6. 1089-1093.1990.10.1128/jcm.28.6.1089-1093.1990
- 57. Margos, G., Lane, R. S., Fedorova, N., Koloczek, J., Pies-man, J., Hojgaard, A., et al., 2016: Borrelia bissettiae sp. nov. and Borrelia californiensis sp. nov. prevail in diverse enzootic transmission cycles. Int. J. Syst. Evol. Microbiol., 66, 1447–1452. DOI: 10.1099/ijsem.0.000897.10.1099/ijsem.0.000897580175926813420
- 58. Margos, G., Fedorova, N., Becker, N. S., Kleinjan, J. E., Marosevic, D., Krebs, S., et al., 2020: Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int. J. Syst. Evol. Microbiol., 70, 849–856. DOI: 10. 1099/ijsem.0.003833.10.1099/ijsem.0.00383331793856
- 59. Margos, G., Sing, A., Fingerle, V., 2017: Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection, 45, 567–569. DOI: 10.1007/s15010-017-1032-1.10.1007/s15010-017-1032-128573415
- 60. Margos, G., Castillo-Ramirez, S., Cutler, S., Dessau, R. B., Eikeland, R., Estrada-Peña, A., et al., 2020: Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int. J. Syst. Evol. Microbiol., 70, 3577–3581. DOI: 10.1099/ijsem.0.004149.10.1099/ijsem.0.00414932320380
- 61. Merino, F. J., Serrano, J. L., Saz, J. V., Nebreda, T., Gegundez, M., Beltran, M., 2000: Epidemiological characteristics of dogs with Lyme borreliosis in the province of Soria (Spain). Eur. J. Epidemiol., 16, 97–100. DOI: 10.1023/A:1007 690807637.10.1023/A:1007690807637
- 62. Minkus, G., Breuer, W., Wanke, R., Hermanns, W., Reusch, C., Leuterer, G., et al., 1994: Familial nephropathy in Bernese Mountain dogs. Vet. Pathol., 31, 421–428. DOI: 10. 1177/030098589403100403.10.1177/0300985894031004037941230
- 63. Miró, G., Wright, I., Michael, H., Burton, W., Hegarty, E., Rodón, J., et al., 2022: Seropositivity of main vector-borne pathogens in dogs across Europe. Parasites and Vectors, 15, 1–13. DOI: 10.1186/s13071-022-05316-5.10.1186/s13071-022-05316-5916929535668469
- 64. Molins, C. R., Ashton, L. V., Wormser, G. P., Hess, A. M., Delorey, M. J., Mahapatra, S., et al., 2015: Development of a metabolic biosignature for detection of early Lyme disease. Clin. Infect. Dis., 60, 1767–1775. DOI: 10.1093/cid/civ185.10.1093/cid/civ185481080825761869
- 65. Nagana Gowda, G. A., Zhang, S., Gu, H., Asiago, V., Shanaiah, N., Raftery, D., 2008: Metabolomics-based methods for early disease diagnostics: A review. Expert Rev. Mol. Diagn., 8, 617–633. DOI: 10.1586/147371 59.8.5.617.10.1586/14737159.8.5.617
- 66. Norris, S. J., 2006: Antigenic variation with a twist – The Borrelia story. Mol. Microbiol., 60, 1319–1322. DOI: 10.11 11/j.1365-2958.2006.05204.x.10.1111/j.1365-2958.2006.05204.x16796669
- 67. Pangrácová, L., Derdáková, M., Pekárik, L., Hviščová, I., Víchová, B., Stanko, M., et al., 2013: Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasites and Vectors, 6, 1–8. DOI: 10.1186/1756-3305-6-238.10.1186/1756-3305-6-238375176223952975
- 68. Pegalajar-Jurado, A., Fitzgerald, B. L., Islam, M. N., Belisle, J. T., Wormser, G. P., Waller, K. S., et al., 2018: Identification of urine metabolites as biomarkers of early Lyme disease. Sci. Rep., 8, 1–12. DOI: 10.1038/s41598-018-29713-y.10.1038/s41598-018-29713-y609393030111850
- 69. Preyß-Jägeler, C., Müller, E., Straubinger, R. K., Hart-mann, K., 2016: Prävalenz von Antikörpern gegen Borrelia burgdorferi, Anaplasma phagocytophilum und bestimmte Leptospira-interrogans-Serovare bei Berner Sennenhunden. Tierarztl. Prax. Ausgabe K: Kleintiere – Heimtiere, 44, 77–85. DOI: 10.15654/TPK-140962.10.15654/TPK-14096227004451
- 70. Pritt, B. S., Respicio-Kingry, L. B., Sloan, L. M., Schriefer, M. E., Replogle, A. J., Bjork, J., et al., 2016: Borrelia mayonii sp. nov., a member of the Borrelia burgdorferi sensu lato complex, detected in patients and ticks in the upper midwestern United States. Int. J. Syst. Evol. Microbiol., 66, 4878–4880. DOI: 10.1099/ijsem.0.001445.10.1099/ijsem.0.001445521495727558626
- 71. Pritt, B. S., Mead, P. S., Johnson, D. K. H., Neitzel, D. F., Respicio-Kingry, L. B., Davis, J. P., et al., 2016: Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: A descriptive study. Lancet Infect. Dis., 16, 556–564. DOI: 10.1016/S 1473-3099(15)00464-8.10.1016/S1473-3099(15)00464-8
- 72. Radolf, J. D., Caimano, M. J., Stevenson, B., Hu, L. T., 2012: Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol., 10, 87–99. DOI: 10.1038/nrmicro2714.10.1038/nrmicro2714331346222230951
- 73. Reif, K. E., 2020: Lyme disease in dogs: Signs and prevention. Today’s Vet. Pract., 10, 24–28. Available at https://todaysveterinarypractice.com/. Accessed January 31, 2023.
- 74. Rosà, R., Andreo, V., Tagliapietra, V., Baráková, I., Arnoldi, D., Hauffe, H. C., et al., 2018: Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int. J. Environ. Res. Public Health, 15, 1–15. DOI: 10.3390/ijerph15040732.10.3390/ijerph15040732592377429649132
- 75. Rudenko, N., Golovchenko, M., Kybicova, K., Vancova, M., 2019: Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites and Vectors, 12, 1–10. DOI: 10.1186/s13071-019-3495-7.10.1186/s13071-019-3495-7652136431097026
- 76. Sapi, E., Kaur, N., Anyanwu, S., Luecke, D. F., Datar, A., Patel, S., et al., 2011: Evaluation of in vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug Resist., 4, 97–113. DOI: 10.2147/IDR.S19201.10.2147/IDR.S19201313287121753890
- 77. Schwartz, A. M., Hinckley, A. F., Mead, P. S., Hook, S. A., Kugeler, K. J., 2017: Surveillance for Lyme disease – United States, 2008–2015. MMWR Surveill. Summ., 66, 1–12. DOI: 10.15585/mmwr.ss6622a1.10.15585/mmwr.ss6622a1582962829120995
- 78. Schwarzová, K., Ferko, M., Farkaš, P. (Eds.), 2019: Arbobactera, Leptospira, Kapnocytophages, Streptobacili – Bacteria with Pathogenic Potential Transmissible to Man (In Slovak). OZ Preveda, Banská Bystrica, Slovakia, 54 pp.
- 79. Smith, A. J., Oertle, J., Prato, D., 2014: Chronic Lyme disease: Persistent clinical symptoms related to immune evasion, antibiotic resistance and various defense mechanisms of Borrelia burgdorferi. Open J. Med. Microbiol., 4, 252–260. DOI: 10.4236/ojmm.2014.44029.10.4236/ojmm.2014.44029
- 80. Spencer, J. A., Butler, J. M., Stafford, K. C., Pough, M. B., Levy, S. A., Bledsoe, D. L., et al., 2003: Evaluation of permethrin and imidacloprid for prevention of Borrelia burgdorferi transmission from blacklegged ticks (Ixodes scapularis) to Borrelia burgdorferi-free dogs. Parasitol. Res., 90, 106–107. DOI: 10.1007/s00436-003-0904-8.10.1007/s00436-003-0904-812928869
- 81. Sperling, J. L. H., Sperling, F. A. H., 2009: Lyme borreliosis in Canada: Biological diversity and diagnostic complexity from an entomological perspective. Can. Entomol., 141, 521–549. DOI: 10.4039/n08-CPA04.10.4039/n08-CPA04
- 82. Spickler, A. R., 2020: Lyme Disease. Available at https://www.cfsph.iastate.edu/Factsheets/pdfs/lyme_disease.pdf. Updated January 2020. Accessed January 31, 2023.
- 83. Stanek, G., Fingerle, V., Hunfeld, K. P., Jaulhac, B., Kaiser, R., Krause, A., et al., 2011: Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect., 17, 69–79. DOI: 10.1111/j.1469-0691.2010.03175.x.10.1111/j.1469-0691.2010.03175.x20132258
- 84. Stanek, G., Wormser, G. P., Gray, J., Strle, F., 2012: Lyme borreliosis. Lancet, 379, 461–473. DOI: 10.1016/S0140-67 36(11)60103-7.10.1016/S0140-6736(11)60103-7
- 85. Stanko, M., Derdáková, M., Špitalská, E., Kazimírová, M., 2022: Ticks and their epidemiological role in Slovakia: From the past till present. Biologia, 77, 1575–1610. DOI: 10. 1007/s11756-021-00845-3.10.1007/s11756-021-00845-3844648434548672
- 86. Steere, A. C., Strle, F., Wormser, G. P., Hu, L. T., Branda, J. A., Li, X., et al., 2016: Lyme borreliosis. Nat. Rev. Dis. Prim., 2, 1–18. DOI: 10.1038/nrdp.2016.90.10.1038/nrdp.2016.90553953927976670
- 87. Štefančíková, A., Derdáková, M., Škardová, I., Szestáková, E., Čisláková, L., Kováčová, D., et al., 2008: Some epidemiological and epizootiological aspects of Lyme borreliosis in Slovakia with the emphasis on the problems of sero-logical diagnostics. Biologia, 63, 1135–1142. DOI: 10.2478/s11756-008-0177-x.10.2478/s11756-008-0177-x
- 88. Stillman, B. A., Thatcher, B., Beall, M. J., Lappin, M., O’Connor, T. P., Chandrashekar, R., 2019: Borrelia burgdorferi antibody test results in dogs administered 4 different vaccines. Top. Companion Anim. Med., 37, 1–4. DOI: 10.10 16/j.tcam.2019.100358.10.1016/j.tcam.2019.10035831837754
- 89. Straubinger, R. K., Summers, B. A., Chang, Y. F., Appel, M. J. G., 1997: Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol., 35, 111–116. DOI: 10.1128/jcm.35.1.111-116.1997.10.1128/jcm.35.1.111-116.19972295218968890
- 90. Straubinger, R. K., Straubinger, A. F., Summers, B. A., Jacobson, R. H., 2000: Status of Borrelia burgdorferi infection after antibiotic treatment and the effects of corticosteroids: An experimental study. J. Infect. Dis., 181, 1069–1081. DOI: 10.1086/315340.10.1086/31534010720533
- 91. Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L., Rego, R. O. M., 2017: Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol., 83, 1–16. DOI: 10.1128/AEM.00609-17.10.1128/AEM.00609-17551467728550059
- 92. Tilly, K., Bestor, A., Rosa, P. A., 2013: Lipoprotein succession in Borrelia burgdorferi: Similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol. Microbiol., 89, 216–227. DOI: 10.1111/mmi.12271.10.1111/mmi.12271371363123692497
- 93. Töpfer, K. H., Straubinger, R. K., 2007: Characterization of the humoral immune response in dogs after vaccination against the Lyme borreliosis agent. A study with five commercial vaccines using two different vaccination schedules. Vaccine, 25, 314–326. DOI: 10.1016/j.vaccine.2006. 07.031.10.1016/j.vaccine.2006.07.031
- 94. Tran, H., Mcconville, M., Loukopoulos, P., 2020: Metabolomics in the study of spontaneous animal diseases. J. Vet. Diagnostic Investig., 32, 635–647. DOI: 10.1177/10406387209 48505.10.1177/1040638720948505
- 95. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Kostecká, Z., 2018: New developed UHPLC method for selected urine metabolites. J. Chromatogr. Sep. Tech., 9, 1–8. DOI: 10. 4172/2157-7064.1000404.
- 96. Valko-Rokytovská, M., Očenáš, P., Salayová, A., Titková, R., Kostecká, Z., 2020: Specific urinary metabolites in canine mammary gland tumours. J. Vet. Sci., 21, 1–10. DOI: 10. 4142/jvs.2020.21.e23.10.4142/jvs.2020.21.e23711356832233131
- 97. Venczel, R., Knoke, L., Pavlovic, M., Dzaferovic, E., Vaculova, T., Silaghi, C., et al., 2016: A novel duplex real-time PCR permits simultaneous detection and differentiation of Borrelia miyamotoi and Borrelia burgdorferi sensu lato. Infection, 44, 47–55. DOI: 10.1007/s15010-015-0820-8.10.1007/s15010-015-0820-826168860
- 98. Vogt, N. A., Sargeant, J. M., MacKinnon, M. C., Versluis, A. M., 2019: Efficacy of Borrelia burgdorferi vaccine in dogs in North America: A systematic review and meta-analysis. J. Vet. Intern. Med., 33, 23–36. DOI: 10.1111/jvim.15344.10.1111/jvim.15344633554130511365
- 99. Vogt, N. A., Stevens, C. P. G., 2021: Why the rationale for canine Borrelia burgdorferi vaccination is unpersuasive. Front. Vet. Sci., 8, 1–3. DOI: 10.3389/fvets.2021.719060.10.3389/fvets.2021.719060838531334458359
- 100. Vrhovec, M. G., Pantchev, N., Failing, K., Bauer, C., Travers-Martin, N., Zahner, H., 2017: Retrospective analysis of canine vector-borne diseases (CVBD) in Germany with emphasis on the endemicity and risk factors of leishmaniosis. Parasitol. Res., 116, 131–144. DOI: 10.1007/s004 36-017-5499-6.10.1007/s00436-017-5499-6
- 101. Wagner, B., Johnson, J., Garcia-Tapia, D., Honsberger, N., King, V., Strietzel, C., et al., 2015: Comparison of effectiveness of cefovecin, doxycycline, and amoxicillin for the treatment of experimentally induced early Lyme borreliosis in dogs. BMC Vet. Res., 11, 1–8. DOI: 10.1186/s12917-015-0475-9.10.1186/s12917-015-0475-9451393826205247
- 102. WHO, Regional Office for Europe, 2006: Lyme borreliosis in Europe. Available at https://www.euro.who.int/__data/assets/pdf_file/0008/246167/Fact-sheet-Lyme-borreliosis-Eng.pdf. Accessed January 31, 2023.
- 103. Wormser, G. P., Schwartz, I., 2009: Antibiotic treatment of animals infected with Borrelia burgdorferi. Clin. Microbiol. Rev., 22, 387–395. DOI: 10.1128/CMR.00004-09.10.1128/CMR.00004-09270839319597005
- 104. Zhang, J., Wei, S., Liu, L., Nagana Gowda, G. A., Bonney, P., Stewart, J., et al., 2012: NMR-based metabolomics study of canine bladder cancer. Biochim. Biophys. Acta Mol. Basis Dis., 1822, 1807–1814. DOI: 10.1016/j.bbadis.2012.08.001.10.1016/j.bbadis.2012.08.00122967815
