References
- 1. Andong, F. A., Okwuonu, E. S., Melefa, T. D., Okoye, C. O., Nkemakolam, A. O., Hinmikaiye, F. F., et al., 2021: The consequence of aqueous extract of tobacco leaves (Nicotiana tabacum L.) on feed intake, body mass, and hematological indices of male Wistar rats fed under equal environmental conditions. J. Am. Coll. Nutr., 40, 5, 429—442. DOI: 10. 1080/07315724.2020.1788471.10.1080/07315724.2020.178847132729775
- 2. Aspera-Werz, R. H., Chen, T., Ehnert, S., Zhu, S., Fröhlich, T., Nussler, A. K., 2019: Cigarette smoke induces the risk of metabolic bone diseases: transforming growth factor beta signaling impairment via dysfunctional primary cilia affects migration, proliferation, and differentiation of human mesenchymal stem cells. Int. J. Mol. Sci., 20, 12, 2915. DOI: 10.3390/ijms20122915.10.3390/ijms20122915662837331207955
- 3. Atabaki, R., Roohbakhsh, A., Moghimi, A., Mehri, S., 2020: Protective effects of maternal administration of curcumin and hesperidin in the rat offspring following repeated febrile seizure: Role of inflammation and TLR4. Int. Immunopharmaco., 86, 106720. DOI: 10.1016/j.intimp.2020.106720.10.1016/j.intimp.2020.10672032585605
- 4. Braun, M., Fromm, E. L., Gerber, A., Klingelhöfer, D., Müller, R., Groneberg, D. A., 2019: Particulate matter emissions of four types of one cigarette brand with and without additives: a laser spectrometric particulate matter analysis of secondhand smoke. BMJ Open, 9, 1, e024400. DOI: 10.1136/bmjopen-2018-024400.10.1136/bmjopen-2018-024400634063430782733
- 5. Cardoso, L. S., Estrela, F. N., Chagas, T. Q., da Silva, W. A. M., de Oliveira Costa, D. R., Pereira, I., et al., 2018: The exposure to water with cigarette residue changes the anti-predator response in female Swiss albino mice. Environ. Sci. Pollut. Res., 25, 9, 8592—8607. DOI: 10.1007/s11356-017-1150-4.10.1007/s11356-017-1150-429318484
- 6. Chírico, M. T. T., Bezerra, F. S., Guedes, M. R., Souza, A. B., Silva, F. C., Campos, G., et al., 2018: Tobacco-free cigarette smoke exposure induces anxiety and panic-related behaviours in male Wistar rats. Sci. Rep., 8, 1, 1—8. DOI: 10. 1038/s41598-018-23425-z.10.1038/s41598-018-23425-z586284629563583
- 7. Choudhary, K. M., Mishra, A., Poroikov, V. V., Goel, R. K., 2013: Ameliorative effect of curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. Eur. J. Pharmacol., 704, 1—3, 33—40. DOI: 10.1016/j.ejphar.2013.02.012.10.1016/j.ejphar.2013.02.01223461849
- 8. Hu, T., Yang, Z., Li, M. D., 2018: Pharmacological effects and regulatory mechanisms of tobacco smoking effects on food intake and weight control. J. Neuroimmune Pharmacol., 13, 4, 453—466. DOI: 10.1007/s11481-018-9800-y.10.1007/s11481-018-9800-y30054897
- 9. Lee, H. M., Kim, C. W., Hwang, K. A., Sung, J. H., Lee, J. K., Choi, K. C., 2017: Cigarette smoke impaired maturation of ovarian follicles and normal growth of uterus inner wall of female wild-type and hypertensive rats. Reprod. Toxicol., 73, 232‒240. DOI: 10.1016/j.reprotox.2017.06.187.10.1016/j.reprotox.2017.06.18728689806
- 10. Li, Q., Sun, J., Mohammadtursun, N., Wu, J., Dong, J., Li, L., 2019: Curcumin inhibits cigarette smoke-induced inflammation via modulating the PPARγ-NF-κB signaling pathway. Food Funct., 10, 12, 7983—7994. DOI: 10.1039/C9FO02159K.10.1039/C9FO02159K
- 11. Loffredo, C. A., Tang, Y., Momen, M., Makambi, K., Radwan, G. N., Aboul-Foutoh, A., 2016: PM2. 5 as a marker of exposure to tobacco smoke and other sources of particulate matter in Cairo, Egypt. Int. J. Tuberc. Lung Dis., 20, 3, 417—422. DOI: 10.5588/ijtld.15.0316.10.5588/ijtld.15.0316585419027046726
- 12. Marchiori, M. S., Oliveira, R. C., Souza, C. F., Baldissera, M. D., Ribeiro, Q. M., Wagner, R., et al., 2019: Curcumin in the diet of quail in cold stress improves performance and egg quality. Anim. Feed Sci. Technol., 254, 114—192. DOI: 10.1016/j.anifeedsci.2019.05.015.10.1016/j.anifeedsci.2019.05.015
- 13. Marslin, G., Prakash, J., Qi, S., Franklin, G., 2018: Oral delivery of curcumin polymeric nanoparticles ameliorates CCl4-induced subacute hepatotoxicity in Wistar rats. Polymers, 10, 5, 541. DOI: 10.3390/polym10050541.10.3390/polym10050541641540730966575
- 14. Onor, I. O., Stirling, D. L., Williams, S. R., Bediako, D., Borghol, A., Harris, M. B., et al., 2017: Clinical effects of cigarette smoking: epidemiologic impact and review of pharmacotherapy options. Int. J. Environ. Res. Public Health, 14, 10, 1147. DOI: 10.3390/ijerph14101147.10.3390/ijerph14101147566464828956852
- 15. Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al., 2020: The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab., 40, 9, 1769—1777. DOI: 10. 1177/0271678X20943823.
- 16. Rehman, A. U., Arif, M., Husnain, M. M., Alagawany, M., El-Hack, A., Mohamed, E., et al., 2019: Growth performance of broilers as influenced by different levels and sources of methionine plus cysteine. Animals, 9, 1, 1056. DOI: 10. 3390/ani9121056.
- 17. Rosen, L. J., Galili, T., Kott, J., Goodman, M., Freedman, L. S., 2018: Diminishing benefit of smoking cessation medications during the first year: a meta-analysis of randomized controlled trials. Addiction, 113, 5, 805—816. DOI: 10.1111/add.14134.10.1111/add.14134594782829377409
- 18. Schwartz, A., Bellissimo, N., 2021: Nicotine and energy balance: a review examining the effect of nicotine on hormonal appetite regulation and energy expenditure. Appetite, 164, 105260. DOI: 10.1016/j.appet.2021.105260.10.1016/j.appet.2021.10526033848592
- 19. Sen, S., Peltz, C., Beard, J., Zeno, B., 2010: Recurrent carbon monoxide poisoning from cigarette smoking. Am. J. Med. Sci., 340, 5, 427—428. DOI: 10.1097/MAJ.0b013 e3181ef712d.
- 20. Simitzis, P. E., Babaliaris, C., Charismiadou, M. A., Papadomichelakis, G., Goliomytis, M., Symeon, G. K., et al., 2014: Effect of hesperidin dietary supplementation on growth performance, carcass traits and meat quality of rabbits. World Rabbit Sci., 22, 2, 113—121. DOI: 10.4995/wrs. 2014.1760.10.4995/wrs
- 21. Simitzis, P., Massouras, T., Goliomytis, M., Charismiadou, M., Moschou, K., Economou, C., et al., 2019: The effects of hesperidin or naringin dietary supplementation on the milk properties of dairy ewes. J. Sci. Food Agric., 99, 1, 6515—6521. DOI: 10.1002/jsfa.9931.10.1002/jsfa.993131321772
- 22. Small, E., Shah, H. P., Davenport, J. J., Geier, J. E., Yavarovich, K. R., Yamada, H., et al., 2010: Tobacco smoke exposure induces nicotine dependence in rats. Psychopharmacology, 208, 1, 143—158. DOI: 10.1007/s00213-009-1716-z.10.1007/s00213-009-1716-z358619819936715
- 23. Teague, S. V., Pinkerton, K. E., Goldsmith, M., Gebremichael, A., Chang, S., Jenkins, R. A., et al., 1994: Side-stream cigarette smoke generation and exposure system for environmental tobacco smoke studies. Inhal. Toxicol., 6, 1, 79—93. DOI: 10.3109/08958379409029697.10.3109/08958379409029697
- 24. Valenti, V. E., Taniguchi, R. Y., Lazarini, C. A., Abreu, L. C. D., Goulart, F. C., 2014: Short term exposure to cigarette smoke on general activity and anxiety. Med. Express, 1, 180—183. DOI: 10.5935/MedicalExpress.2014.04.04.10.5935/MedicalExpress.2014.04.04
- 25. Vani, G., Anbarasi, K., Shyamaladevi, C. S., 2015: Baco-side a: Role in cigarette smoking induced changes in brain. Evid. Based Complementary Altern. Med., 2015, 286137. DOI: 10.1155/2015/286137.10.1155/2015/286137456463626413118
- 26. Wang, S., He, N., Xing, H., Sun, Y., Ding, J., Liu, L., 2020: Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J. Recept. Signal Transduct. Res., 40, 4, 388—394. DOI: 10.1080/10799893. 2020.1738483.
- 27. Ypsilantis, P., Politou, M., Anagnostopoulos, C., Tsigalou, C., Kambouromiti, G., Kortsaris, A., et al., 2012: Effects of cigarette smoke exposure and its cessation on body weight, food intake and circulating leptin, and ghrelin levels in the rat. Nicotine Tob. Res., 15, 1, 206—212. DOI: 10.1093/ntr/nts113.10.1093/ntr/nts11322589425
- 28. Zhai, T., Li, S., Hu, W., Li, D., Leng, S., 2018: Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients, 10, 7, 813. DOI: 10.3390/nu10070813.10.3390/nu10070813607311729941777
- 29. Zwozdziak, A., Sówka, I., Willak-Janc, E., Zwozdziak, J., Kwiecińska, K., Balińska-Miśkiewicz, W., 2016: Influence of PM 1 and PM 2.5 on lung function parameters in healthy schoolchildren—a panel study. Environ. Sci. Pollut. Res., 23, 23, 23892—23901. DOI: 10.1007/s11356-016-7605-1.10.1007/s11356-016-7605-1511058727628915
