Have a personal or library account? Click to login
Exopolysaccharides May Increase Gastrointestinal Stress Tolerance of Lactobacillus reuteri Cover

Exopolysaccharides May Increase Gastrointestinal Stress Tolerance of Lactobacillus reuteri

Open Access
|Dec 2018

References

  1. 1. Alp, G., Aslim, B., 2010: Relationship between the resistance to bile salts and low pH with exopolysaccharide (EPS) production of Bifidobacterium spp. isolated from infants feces and breast milk. Anaerobe, 16, 101—105.10.1016/j.anaerobe.2009.06.006
  2. 2. Amund, O. D., Ouoba, L. I. I., Sutherland, J. P., Ghoddusi, H. B., 2014: Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis spp. lactis. Benef. Microbes, 5, 461—469.10.3920/BM2013.0099
  3. 3. Amund, O. D., 2016: Exploring the relationship between exposure to technological and gastrointestinal stress and pro-biotic functional properties of lactobacilli and bifidobacteria. Can. J. Microbiol., 62, 715—725.10.1139/cjm-2016-0186
  4. 4. Azcarate-Peril, M. A., McAuliffe, O., Altermann, E., Lick, S., Russell, W. M., Klaenhammer, T. R., 2005: Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol., 71, 5794—5804.10.1128/AEM.71.10.5794-5804.2005
  5. 5. Badel, S., Bernardi, T., Michaud, P., 2011: New perspectives for Lactobacilli exopolysaccharides. Biotechnol. Adv., 29, 54—66.10.1016/j.biotechadv.2010.08.011
  6. 6. Ben Amor, K., Breeuwer, P., Verbaarschot, P., Rombouts, F. M., Akkermans, A. D. L., De Vos, W. M., Abee, T., 2002: Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead Bifidobacterium cells during bile salt stress. Appl. Environ. Microbiol., 68, 5209—5216.10.1128/AEM.68.11.5209-5216.2002
  7. 7. Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., Gil, A., 2012: Probiotic mechanisms of action. Ann. Nutr. Metab., 61, 160—174.10.1159/000342079
  8. 8. Bernal, P., Llamas, M. A., 2012: Promising biotechnological applications of antibiofilm exopolysaccharides. Microbiol. Biotechnol., 5, 670—673.10.1111/j.1751-7915.2012.00359.x
  9. 9. Boke, H., Aslim, B., Alp, G., 2010: The role of resistance to bile salts and acid tolerance of exopolysaccharides produced by yogurt starter bacteria. Arch. Bio. Sci. Belgrade, 62, 323—328.10.2298/ABS1002323B
  10. 10. Bradford, M. M., 1976: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248—254.10.1016/0003-2697(76)90527-3
  11. 11. Chapot-Chartier, M. P., Monnet, V., De Vuyst, L., 2011: Cell walls and exopolysaccharides of lactic acid bacteria. In Lede-boer, A., Hugenholtz, J., Kok, J., Konings, W., Wouters, J. (Eds.): The 10th LAB Symposium. Thirty Years Research on Lactic Acid Bacteria. Media Labs, Rotterdam, 37—59.
  12. 12. Chen, Y., Woodward, A., Zijlstra, R. T., Gänzle, M. G., 2014: Exopolysaccharides synthesized by Lactobacillus reuteri protect against enterotoxigenic Escherichia coli in piglets. Appl. Environ. Microbiol., 80, 5752—5760.10.1128/AEM.01782-14
  13. 13. De Vuyst, L., Degeest, B., 1999: Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev., 23, 153—177.10.1016/S0168-6445(98)00042-4
  14. 14. Dertli, E., Mayer, M. J., Narbad, A., 2015: Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol., 15, 8.10.1186/s12866-015-0347-2432636425648083
  15. 15. Donoghue, H. D., Newman, H. N., 1976: Effect of glucose and sucrose on survival in batch culture of Streptococcus mutans C67-1 and a noncariogenic mutant, C67-25. Infect. Immun., 13, 16—21.10.1128/iai.13.1.16-21.19764205702556
  16. 16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F., 1956: Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350—356.10.1021/ac60111a017
  17. 17. Durlu-Ozkaya, F., Aslimb, B., Ozkaya, M. T., 2007: Effect of exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii subsp. bulgaricus strains to bacteriophage and nisin sensitivity of the bacteria. LWT-Food Science and Technology, 40, 564—568.10.1016/j.lwt.2005.09.009
  18. 18. Gänzle, M., Schwab, C., 2009: Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilization, stress tolerance, and biofilm formation. In Ullrich, M. (Ed.):Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, Norfolk, 263—278.
  19. 19. Giraffa, G., Chanishvili, N., Widyastuti, Y., 2010: Importance of lactobacilli in food and feed biotechnology. Res. Microbiol., 161, 480—487.10.1016/j.resmic.2010.03.00120302928
  20. 20. Jones, S. E., Versalovic, J., 2009: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol., 9, 35—43.10.1186/1471-2180-9-35265350919210794
  21. 21. Kim, Y., Sejong, O. H., Kim, S. H., 2009: Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem. Biophys. Res. Commun., 379, 324—329.10.1016/j.bbrc.2008.12.05319103165
  22. 22. Kimmel, S. A., Roberts, R. F., Ziegler, G. R., 1998: Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microbiol., 64, 659—664.10.1128/AEM.64.2.659-664.19981060989464404
  23. 23. Kos, B., Šušković, J., Goreta, J., Matošić, S., 2000: Effect of protectors on the viability of Lactobacillus acidophilus M92 in simulated gastrointestinal conditions. Food Technol. Biotech., 38, 121—127.
  24. 24. Kšonžeková, P., Bystrický, P., Vlčková, S., Pätoprstý, V., Pulzová, L, Mudroňová, D., et al., 2016: Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr. Polym., 141, 10—19.10.1016/j.carbpol.2015.12.037
  25. 25. Kubota, H., Senda, S., Nomura, N., Tokuda, H., Uchiyama, H., 2008: Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng., 106, 381—386.10.1263/jbb.106.381
  26. 26. Lambert, J. M., Bongers, R. S., de Vos, W. M., Kleerebezem, M., 2008: Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl. Environ. Microbiol., 74, 4719—4726.10.1128/AEM.00137-08
  27. 27. London, L. E. E., Price, N. P. J., Ryan, P., Wang, L., Auty, M. A. E., Fitzgerald, G. F., et al., 2014: Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J. Appl. Microbiol., 117, 509—517.10.1111/jam.12542
  28. 28. Mills, S., Stanton, C., Fitzgerald, G. F., Ross, R. P., 2011: Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Fact, 10 (Suppl. 1), 19.10.1186/1475-2859-10-S1-S19
  29. 29. Mortazavian, M., Mohammadi, R., Sohrabvandi, S., 2012: Delivery of probiotic microorganisms into gastrointestinal tract by food products. In Brzozowski, T. (Ed.):New Advances in the Basic and Clinical Gastroenterology. InTech, Rijeka, 121—146.
  30. 30. Mudroňová, D., 2015: Flow cytometry as an auxiliary tool for the selection of probiotic bacteria. Benef. Microbes, 6, 727—734.10.3920/BM2014.0145
  31. 31. Nwodo, U. U., Green, E., Okoh, A. I., 2012: Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci., 13, 14002—14015.10.3390/ijms131114002
  32. 32. Oh, N. S., Joung, J. Y., Lee, J. Y., Kim, Y., 2018: Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant faeces. PLoS ONE, 13, e0192021.10.1371/journal.pone.0192021
  33. 33. Qurashi, A. W., Sabri, A. N., 2012: Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz. J. Microbiol., 43, 1183—1191.10.1590/S1517-83822012000300046
  34. 34. Ruas-Madiedo, P., Hugenholtz, J., Zoon, P., 2002: An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J., 12, 163—171.10.1016/S0958-6946(01)00160-1
  35. 35. Ruas-Madiedo, P, de los Reyes-Gavilan, C. G., 2005: Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci., 88, 843—856.10.3168/jds.S0022-0302(05)72750-8
  36. 36. Ruas-Madiedo, P., Gueimonde, M., Arigoni, F., de los Reyes-Gavilan, C. G., Margolles, A., 2009: Bile affects the synthesis of exopolysaccharides by Bifidobacterium animalis. Appl. Environ. Microbiol., 75, 1204—1207.10.1128/AEM.00908-08264358619088310
  37. 37. Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de los Reyes-Gavilan, C. G., Margolles, A., Sanchez, B., 2011: How do bifidobacteria counteract environmental challenges ? Mechanisms involved and physiological consequences. Genes Nutr., 6, 307—318.10.1007/s12263-010-0207-5314506221484166
  38. 38. Ryznerová, D., 2013:The Study of the Properties of the Probiotic Bacteria in Terms of their Biological Effects and Applications. Dissertation thesis, University of Veterinary Medicine and Pharmacy in Košice, SR, 146 pp.
  39. 39. Sanchez, B., Ruiz, L., van Sinderen, D., Margolles, A., Zomer, A. L., 2010: Acid and bile resistance and stress response in bifidobacteria. In Mayo, B., van Sinderen, D. (Eds.):Bifidobacteria: Genomics and Molecular Aspects. Caister Academic Press, Norfolk, UK, 71—96.
  40. 40. Sims, I. M., Frese, S. A., Walter, J., Loach, D., Wilson, M., Appleyard, K., et al., 2011: Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J., 5, 1115—1124.10.1038/ismej.2010.201314627921248858
  41. 41. Stack, H. M., Kearney, N., Stanton, C., Fitzgerald, G. F., Ross, R. P., 2010: Association of beta-glucan endogenous production with increased stress tolerance of intestinal Lacto-bacilli. Appl. Environ. Microbiol., 76, 500—507.10.1128/AEM.01524-09280520719933353
  42. 42. Sugimoto, S., Abdullah, Al. M., Sonomoto, K., 2008: Molecular chaperones in lactic acid bacteria: physiological consequences and biochemical properties. J. Biosci. Bioeng., 106, 324—336.10.1263/jbb.106.32419000607
  43. 43. Tieking, M., Kaditzky, S., Valcheva, R., Korakli, M., Vogel, R. F., Ganzle, M. G., 2005: Extracellular homopolysaccha-rides and oligosaccharides from intestinal lactobacilli. J. Appl. Microbiol., 99, 692—702.10.1111/j.1365-2672.2005.02638.x16108811
  44. 44. Van Geel-Schutten, G. H., Flesch, F., ten Brink, B., Smith, M. R., Dijkhuizen, L., 1998: Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl. Microbiol. Biotechnol., 50, 697—703.10.1007/s002530051353
  45. 45. Wall, T., Bath, K. Britton, R. A., Jonsson, H., Versalovic, J., Roos, S., 2007: The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol., 73, 3924—3935.10.1128/AEM.01502-06193272017449683
  46. 46. Walter, J., Schwab, C., Loach, D. M., Ganzle, M. G., Tannock, G. W., 2008: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology, 154, 72—80.10.1099/mic.0.2007/010637-018174127
  47. 47. Zannini, E., Waters, D. M., Coffey, A., Arendt, E. K., 2016: Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl. Microbiol. Biotechnol., 100, 1121—1135.10.1007/s00253-015-7172-226621802
DOI: https://doi.org/10.2478/fv-2018-0034 | Journal eISSN: 2453-7837 | Journal ISSN: 0015-5748
Language: English
Page range: 24 - 32
Submitted on: Nov 14, 2018
Accepted on: Dec 4, 2018
Published on: Dec 31, 2018
Published by: The University of Veterinary Medicine and Pharmacy in Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2018 M. Fedorová, R. Nemcová, D. Mudroňová, E. Styková, M. Brudňáková, K. Reiffová, published by The University of Veterinary Medicine and Pharmacy in Košice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.