Have a personal or library account? Click to login
Photochromic Print's Distinct Photo-Fading Characteristics under Continuous UV Irradiation Measurement Modes Cover

Photochromic Print's Distinct Photo-Fading Characteristics under Continuous UV Irradiation Measurement Modes

Open Access
|Oct 2025

References

  1. Bamfield P, Hutchings MG. Chromic phenomena: technological applications of colour chemistry. Royal Society of Chemistry; 2010. https://doi.org/10.1039/9781788012843
  2. Vik M, Periyasamy AP. Chromic materials: fundamentals, measurements, and applications. CRC Press; 2018 Aug 6. https://doi.org/10.1201/9781351171007
  3. Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC advances. 2018;8(50):28395–28404. https://doi.org/10.1039/c8ra05856c
  4. Little AF, Christie RM. Textile applications of photochromic dyes. Part 2: factors affecting the photocoloration of textiles screen-printed with commercial photochromic dyes. Coloration Technology. 2010 Jun;126(3):164–70. https://doi.org/10.1111/j.1478-4408.2010.00242.x
  5. Little AF, Christie RM. Textile applications of photochromic dyes. Part 3: factors affecting the technical performance of textiles screen-printed with commercial photochromic dyes. Coloration Technology. 2011 Oct;127(5):275–281. https://doi.org/10.1111/j.1478-4408.2011.00307.x
  6. Vikova M, Vik M. Alternative UV sensors based on color-changeable pigments. Advances in Chemical Engineering and Science. 2011 Oct 26;1(04):224. http://dx.doi.org/10.4236/aces.2011.14032
  7. Solanki U, Viková M, Vik M. New Method for Prediction of Photochromic Textiles Fatigue Behavior. In Materials Science Forum 2022 Jul 11 (Vol. 1063, pp. 163–172). Trans Tech Publications Ltd. https://doi.org/10.4028/p-ld65c6
  8. Solanki UB, Viková M, Vik M. Spectrokinetic Investigation of the Photochromic system under continuous UV irradiance using reflectance vs. time curves. Fibres and Textiles 31(2), 2024, 35–41. https://doi.org/10.15240/tul/008/2024-2-005
  9. Solanki UB, Viková M, Holec P, Erben J, Vik M. Characterisation and photo-fatigue behaviour of UV-sensitive photochromic systems produced using electrospinning. Journal of Industrial Textiles. 2024 May 31;54:15280837241260068. https://doi.org/10.1177/15280837241260068
  10. Seipel S, Yu J, Viková M, Vik M, Koldinská M, Havelka A, Nierstrasz VA. Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications. Fibers and Polymers. 2019 Jul;20:1424–1435. https://doi.org/10.1007/s12221-019-1039-6
  11. Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Resource-efficient production of a smart textile UV sensor using photochromic dyes: Characterization and optimization. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. 2018:251–257. https://doi.org/10.1007/978-3-319-69050-6_22
  12. Salemi C, Giusti G, Guglielmetti R. DABCO effect on the photodegradation of photochromic compounds in spiro [indoline-pyran] and spiro [indoline-oxazine] series. Journal of Photochemistry and Photobiology A: Chemistry. 1995 Feb 15;86(1–3):247–252. https://doi.org/10.1016/1010-6030(94)03926-L
  13. Baillet G, Giusti G, Guglielmetti R. Study of the Fatigue Process and Yellowing of Polymeric Films Containing Spirooxazine Photochromic Compounds. Bulletin of the Chemical Society of Japan. 1995;68(4):1220–1225. https://doi.org/10.1246/bcsj.68.1220
  14. Christie RM, Agyako CK, Mitchell K. An investigation of the electronic spectral properties of the merocyanines derived from photochromic spiroindolinonaphth [2, 1-b][1, 4] oxazines. Dyes and Pigments. 1995 Jan 1;29(3):241–250. https://doi.org/10.1016/0143-7208(95)00049-L
  15. Kellmann A, Tfibel F, Dubest R, Levoir P, Aubard J, Pottier E, Guglielmetti R. Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran. Journal of Photochemistry and Photobiology A: Chemistry. 1989 Sep 1;49(1–2):63–73. https://doi.org/10.1016/1010-6030(89)87106-0
  16. Pimienta V, Micheau JC. Kinetic analysis of photoreversible photochromic systems under continuous monochromatic irradiation from Abs. vs time curves. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 2000 Jun 1;344(1):157–62. https://doi.org/10.1080/10587250008023830
  17. Deniel MH, Lavabre D, Micheau JC 2002. Photokinetics under Continuous Irradiation. In: Crano, J.C., Guglielmetti, R.J. (eds) Organic Photochromic and Thermochromic Compounds. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/0-306-46912-X_4
  18. Ortica F. The role of temperature in the photochromic behaviour. Dyes and Pigments. 2012 Feb 1;92(2):807–16. https://doi.org/10.1016/j.dyepig.2011.04.002
  19. Gaeva EB, Pimienta V, Delbaere S, Metelitsa AV, Voloshin NA, Minkin VI, Vermeersch G, Micheau JC. Spectral and kinetic properties of a red–blue pH-sensitive photochromic spirooxazine. Journal of Photochemistry and Photobiology A: Chemistry. 2007 Sep 25;191(2–3):114–21. https://doi.org/10.1016/j.jphotochem.2007.04.011
DOI: https://doi.org/10.2478/ftee-2025-0009 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 87 - 95
Published on: Oct 25, 2025
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Utkarshsinh B Solanki, Martina Viková, Michal Vik, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.