Bamfield P, Hutchings MG. Chromic phenomena: technological applications of colour chemistry. Royal Society of Chemistry; 2010. https://doi.org/10.1039/9781788012843
Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC advances. 2018;8(50):28395–28404. https://doi.org/10.1039/c8ra05856c
Little AF, Christie RM. Textile applications of photochromic dyes. Part 2: factors affecting the photocoloration of textiles screen-printed with commercial photochromic dyes. Coloration Technology. 2010 Jun;126(3):164–70. https://doi.org/10.1111/j.1478-4408.2010.00242.x
Little AF, Christie RM. Textile applications of photochromic dyes. Part 3: factors affecting the technical performance of textiles screen-printed with commercial photochromic dyes. Coloration Technology. 2011 Oct;127(5):275–281. https://doi.org/10.1111/j.1478-4408.2011.00307.x
Vikova M, Vik M. Alternative UV sensors based on color-changeable pigments. Advances in Chemical Engineering and Science. 2011 Oct 26;1(04):224. http://dx.doi.org/10.4236/aces.2011.14032
Solanki U, Viková M, Vik M. New Method for Prediction of Photochromic Textiles Fatigue Behavior. In Materials Science Forum 2022 Jul 11 (Vol. 1063, pp. 163–172). Trans Tech Publications Ltd. https://doi.org/10.4028/p-ld65c6
Solanki UB, Viková M, Vik M. Spectrokinetic Investigation of the Photochromic system under continuous UV irradiance using reflectance vs. time curves. Fibres and Textiles 31(2), 2024, 35–41. https://doi.org/10.15240/tul/008/2024-2-005
Solanki UB, Viková M, Holec P, Erben J, Vik M. Characterisation and photo-fatigue behaviour of UV-sensitive photochromic systems produced using electrospinning. Journal of Industrial Textiles. 2024 May 31;54:15280837241260068. https://doi.org/10.1177/15280837241260068
Seipel S, Yu J, Viková M, Vik M, Koldinská M, Havelka A, Nierstrasz VA. Color performance, durability and handle of inkjet-printed and UV-cured photochromic textiles for multi-colored applications. Fibers and Polymers. 2019 Jul;20:1424–1435. https://doi.org/10.1007/s12221-019-1039-6
Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Resource-efficient production of a smart textile UV sensor using photochromic dyes: Characterization and optimization. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. 2018:251–257. https://doi.org/10.1007/978-3-319-69050-6_22
Salemi C, Giusti G, Guglielmetti R. DABCO effect on the photodegradation of photochromic compounds in spiro [indoline-pyran] and spiro [indoline-oxazine] series. Journal of Photochemistry and Photobiology A: Chemistry. 1995 Feb 15;86(1–3):247–252. https://doi.org/10.1016/1010-6030(94)03926-L
Baillet G, Giusti G, Guglielmetti R. Study of the Fatigue Process and Yellowing of Polymeric Films Containing Spirooxazine Photochromic Compounds. Bulletin of the Chemical Society of Japan. 1995;68(4):1220–1225. https://doi.org/10.1246/bcsj.68.1220
Christie RM, Agyako CK, Mitchell K. An investigation of the electronic spectral properties of the merocyanines derived from photochromic spiroindolinonaphth [2, 1-b][1, 4] oxazines. Dyes and Pigments. 1995 Jan 1;29(3):241–250. https://doi.org/10.1016/0143-7208(95)00049-L
Kellmann A, Tfibel F, Dubest R, Levoir P, Aubard J, Pottier E, Guglielmetti R. Photophysics and kinetics of two photochromic indolinospirooxazines and one indolinospironaphthopyran. Journal of Photochemistry and Photobiology A: Chemistry. 1989 Sep 1;49(1–2):63–73. https://doi.org/10.1016/1010-6030(89)87106-0
Pimienta V, Micheau JC. Kinetic analysis of photoreversible photochromic systems under continuous monochromatic irradiation from Abs. vs time curves. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 2000 Jun 1;344(1):157–62. https://doi.org/10.1080/10587250008023830