References
- Carroll A.W.; Soderstrom C.A., A new nonpenetrating ballistic injury, Ann. Surg., 188 (6), 1978, p. 753-757.
- Arborelius U. P; Rocksén D., Gustavsson J.; Günther M., Pulmonary hypoxia and venous admixture correlate linearly to the kinetic energy from porcine high velocity projectile behind armor blunt trauma, Experimental Lung Research, 47 (7), 2021, p. 323-333.
- Yoon G. H.; Mo J. S.; Kim K. H.; Yoon Ch. H., Investigation of bullet penetration in ballistic gelatin via finite element simulation and experiment, Journal of Mechanical Science and Technology, 29 (9), 2015, p. 3747-3759.
- Gilson L.; Rabet L.; Imad A.; Coghe F., Experimental and numerical assessment of non-penetrating impacts on a composite protection and ballistic gelatine, International Journal of Impact Engineering, 136, 2020.
- Shen W.; Niu Y.; Mattrey R.F. Development and validation of subjectspecific finite element models for blunt trauma study, J. Biomech. Eng., 130 (2), 2008.
- Jennings R.M.; Malbon C.; Brock F.; Harrisson S.; Carr D.J., A preliminary study into injuries due to non-perforating ballistic impacts into soft body armour over the spine, Injury, 49 (7), 2018, p. 1251-1257.
- Gotts P.L., Personal armour testing versus small arms ammunition when the test standard doesn’t fit, Problems of Mechatronics Armament, Aviation, Safety Engineering, ISSN 2081-5891, 4 (22), 2015, p. 19-30.
- Ruiguo Han; Yongjie Qu; Wen-min Yan; Bin Qin; Shu Wang; Jian-Zhong Wang, Experimental study of transient pressure wave in the behind armor blunt trauma induced by different rifle bullets, Defence Technology, 16, 2020, p. 900-909.
- Shaomin Luo; Cheng Xu; Aijun Chen; Xiaoyun Zhang, Experimental investigation of the response of gelatine behind the soft body armor, Forensic Science International, 266, 2016, p. 8-13.
- Shaomin Luoa; Yaoke Wen; Juan Li, Experimental investigation on the characteristics of temporary cavity in BABT with 9 mm projectiles, Forensic Science International, 323, 2021.
- Struszczyk M.H.; Łandwijt M.; Wilbik-Hałgas B., Estimation of the propagation of the impact wave phenomenon as a result of a bullet impact in PACVD-modified textiles, Fibres & Textiles in Eastern Europe, 27, 2 (134),2019, p. 68-73.
- Kumar J.; Landheer D.; Barnes-Warden J.; Fenne P.; Attridge A.; Williams M.A., Inconsistency in 9 mm bullets measured with non-destructive X-ray computer tomography, Forensic Sci. Int., 214, 2011, p. 48-58.
- Thornby J.; Landheer D.; Williams T. Inconsistency in 9 mm bullets: Correlation of jacket thickness to postimpact geometry measured with nondestructive X-ray computed tomography, Forensic Science International, 234, 2014, p. 111-119.
- Rafaels K. A.; Lizins M. E.; Loftis K. L.; Bir C. A., The relationship between the shape of backface deformation and behind armour blunt trauma, Proceedings of the Personal Armour Systems Symposium,2020, p. 183-193.
- NATO STANAG 2920 Ed.2;
- NATO STANAG 2920 Ed.3-AEP 2920 Edition A, Version 1;
- U.S. Department of Justice National Institute of Justice. Available from: https://www.ojp.gov/pdffiles1/nij/nlectc/206095. pdf [access data 2023-06-01]
- Vereinigung der Prüfstellen für angriffshemmende Materialien und Konstruktionen (VPAM) Standard. Avaliable from: https://www.vpam.eu/ pruefrichtlinien/aktuell/apr-2006/ [access data 2023-06-01]