Have a personal or library account? Click to login

Removal of Zinc Ions from Aqueous Solutions with the Use of Lignin and Biomass Part II

Open Access
|Jul 2023

References

  1. Okereafor, U.; Makhatha, M.; Mekuto, L.; Uche-Okereafor, N.; Sebola, T.; Mavumengwana, V. Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic Life and Human Health. IJERPH 2020, 17, 2204, doi:10.3390/ijerph17072204.
  2. Rypińska, I.; Biegańska, M. Modification of Salix Americana Willow Bark for Removal of Heavy Metal Ions from Aqueous Solutions. Polish Journal of Chemical Technology 2014, 16, 41–44, doi:10.2478/pjct-2014-0067.
  3. Dhakal, R.P.; Ghimire, K.N.; Inoue, K.; Yano, M.; Makino, K. Acidic Polysaccharide Gels for Selective Adsorption of Lead (II) Ion. Separation and Purification Technology 2005, 42, 219–225, doi:10.1016/j.seppur.2004.07.016.
  4. Fertu, D.I.; Bulgariu, L.; Gavrilescu, M. Modeling and Optimization of Heavy Metals Biosorption by Low-Cost Sorbents Using Response Surface Methodology. Processes 2022, 10, 523, doi:10.3390/pr10030523.
  5. Bilal, M.; Ihsanullah, I.; Younas, M.; Ul Hassan Shah, M. Recent Advances in Applications of Low-Cost Adsorbents for the Removal of Heavy Metals from Water: A Critical Review. Separation and Purification Technology 2021, 278, 119510, doi:10.1016/j.seppur.2021.119510.
  6. Gryko, K.; Kalinowska, M.; Świderski, G. The Use of Apple Pomace in Removing Heavy Metals from Water and Sewage. In Proceedings of the Innovations-Sustainability-Modernity-Openness Conference (ISMO’21); MDPI, November 2 2021; p. 24.
  7. Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T. Removal of Nickel(II) and Lead(II) Ions from Aqueous Solution Using Peat as a Low-Cost Adsorbent: A Kinetic and Equilibrium Study. Arabian Journal of Chemistry 2018, 11, 1209–1222, doi:10.1016/j.arabjc.2015.07.018.
  8. Kuczajowska-Zadrożna, M.; Filipkowska, U.; Jóźwiak, T. Adsorption of Cu (II) and Cd (II) from Aqueous Solutions by Chitosan Immobilized in Alginate Beads. Journal of Environmental Chemical Engineering 2020, 8, 103878, doi:10.1016/j.jece.2020.103878.
  9. Stanisz, M.; Klapiszewski, Ł.; Kołodyńska, D.; Jesionowski, T. Development of Functional Lignin-Based Spherical Particles for the Removal of Vanadium(V) from an Aqueous System. International Journal of Biological Macromolecules 2021, 186, 181–193, doi:10.1016/j.ijbiomac.2021.07.046.
  10. Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustainable Chem. Eng. 2018, 6, 7181–7192, doi:10.1021/acssuschemeng.8b01345.
  11. Szalaty, T.J.; Klapiszewski, Ł.; Jesionowski, T. Recent Developments in Modification of Lignin Using Ionic Liquids for the Fabrication of Advanced Materials–A Review. Journal of Molecular Liquids 2020, 301, 112417, doi:10.1016/j.molliq.2019.112417.
  12. Jayakumar, V.; Govindaradjane, S.; Rajamohan, N.; Rajasimman, M. Biosorption Potential of Brown Algae, Sargassum Polycystum, for the Removal of Toxic Metals, Cadmium and Zinc. Environ Sci Pollut Res 2021, doi:10.1007/s11356-021-15185-7.
  13. Gavrilescu, M. Removal of Heavy Metals from the Environment by Biosorption. Eng. Life Sci. 2004, 4, 219–232, doi:10.1002/elsc.200420026.
  14. Mattos Deus R., Panzarin Savietto J., Rosane Aparecida Gomes Battistelle R.; Ometto A.R Trends in Publications on the Circular Economy. Revista ESPACIOS 2017.
  15. Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of Heavy Metal Ions from Wastewater by Chemically Modified Plant Wastes as Adsorbents: A Review. Bioresource Technology 2008, 99, 3935– 3948, doi:10.1016/j.biortech.2007.06.011.
  16. Miros-Kudra P; Sobczak P; Kopania E Removal of Heavy Metals from Aqueous Solutions with the Use of Lignins and Biomass. Fibres & Textiles in Eastern Europe 2022, 151, 99–111, doi:https://doi.org/10.2478/ftee-2022-0013.
  17. H. Kim, M. K. Hill, A. L. Friche Preparation of Kraft Lignin from Black Liquor. Tappi J 1987, 112.
  18. Dutta, A. Fourier Transform Infrared Spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier, 2017; pp. 73–93 ISBN 978-0-323-46140-5.
  19. PN-92/ P-50092 Surowce Dla Przemysłu Papierniczego DREWNO- Analiza Chemiczna (in Polish). Wydawnictwo normalizacyjne „ALFA” 1992.
  20. Alba, K.; MacNaughtan, W.; Laws, A.P.; Foster, T.J.; Campbell, G.M.; Kontogiorgos, V. Fractionation and Characterisation of Dietary Fibre from Blackcurrant Pomace. Food Hydrocolloids 2018, 81, 398–408, doi:10.1016/j.foodhyd.2018.03.023.
  21. Li, T.; Takkellapati, S. The Current and Emerging Sources of Technical Lignins and Their Applications: Sources of Technical Lignins. Biofuels, Bioprod. Bioref. 2018, 12, 756–787, doi:10.1002/bbb.1913.
  22. Adsorpcja miedzi(II) i cynku(II) na modyfikowanej korze wierzby Salix americana (in Polish). Proceedings of ECOpole 2013, doi:10.2429/proc.2013.7(2)092.
  23. Wang, K.; Xu, F.; Sun, R. Molecular Characteristics of Kraft-AQ Pulping Lignin Fractionated by Sequential Organic Solvent Extraction. IJMS 2010, 11, 2988– 3001, doi:10.3390/ijms11082988.
  24. Faleva, A.V.; Belesov, A.V.; Kozhevnikov, A.Yu.; Falev, D.I.; Chukhchin, D.G.; Novozhilov, E.V. Analysis of the Functional Group Composition of the Spruce and Birch Phloem Lignin. International Journal of Biological Macromolecules 2021, 166, 913–922, doi:10.1016/j.ijbiomac.2020.10.248.
  25. Anderson RJ, Bendell DJ Organic Spectroscopic Analysis. Royal Society of Chemistry; Groundwater PW, 2004;
  26. Tsuboi, M. Infrared Spectrum and Crystal Structure of Cellulose. J. Polym. Sci. 1957, 25, 159–171, doi:10.1002/pol.1957.1202510904.
  27. Wu, D.; Wang, Y.; Li, Y.; Wei, Q.; Hu, L.; Yan, T.; Feng, R.; Yan, L.; Du, B. Phosphorylated Chitosan/CoFe2O4 Composite for the Efficient Removal of Pb(II) and Cd(II) from Aqueous Solution: Adsorption Performance and Mechanism Studies. Journal of Molecular Liquids 2019, 277, 181–188, doi:10.1016/j.molliq.2018.12.098.
  28. Silva, S.M.L. Application of Infrared Spectroscopy to Analysis of Chitosan/ Clay Nanocomposites; 2012; ISBN 978-953-51-0537-4.
  29. Voo, W.-P.; Lee, B.-B.; Idris, A.; Islam, A.; Tey, B.-T.; Chan, E.-S. Production of Ultra-High Concentration Calcium Alginate Beads with Prolonged Dissolution Profile. RSC Adv. 2015, 5, 36687–36695, doi:10.1039/C5RA03862F.
  30. Szymanska-Chargot, M.; Zdunek, A. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process. Food Biophysics 2013, 8, 29–42, doi:10.1007/s11483-012-9279-7.
  31. Synytsya, A. Fourier Transform Raman and Infrared Spectroscopy of Pectins. Carbohydrate Polymers 2003, 54, 97–106, doi:10.1016/S0144-8617(03)00158-9.
  32. Sene, Cfb.; McCann, M.C.; Wilson, R.H.; Grinter, R. Fourier-Transform Raman and Fourier-Transform Infrared Spectroscopy (An Investigation of Five Higher Plant Cell Walls and Their Components). Plant Physiol. 1994, 106, 1623–1631, doi:10.1104/pp.106.4.1623.
  33. Largo-Gosens, A.; Hernández-Altamirano, M.; GarcÃa-Calvo, L.; Alonso-SimÃ3n, A.; à lvarez, J.; Acebes, J.L. Fourier Transform Mid Infrared Spectroscopy Applications for Monitoring the Structural Plasticity of Plant Cell Walls. Front. Plant Sci. 2014, 5, doi:10.3389/fpls.2014.00303.
  34. Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds. J. Chem. Educ. 1962, 39, 546, doi:10.1021/ed039p546.
  35. Kołodziejczak-Radzimska, A.; Markiewicz, E.; Jesionowski, T. Structural Characterisation of ZnO Particles Obtained by the Emulsion Precipitation Method. Journal of Nanomaterials 2012, 2012, 1–9, doi:10.1155/2012/656353.
  36. Kozioł, A.; Środa-Pomianek, K.; Górniak, A.; Wikiera, A.; Cyprych, K.; Malik, M. Structural Determination of Pectins by Spectroscopy Methods. Coatings 2022, 12, 546, doi:10.3390/coatings12040546.
  37. Valentín, L.; Kluczek-Turpeinen, B.; Willför, S.; Hemming, J.; Hatakka, A.; Steffen, K.; Tuomela, M. Scots Pine (Pinus Sylvestris) Bark Composition and Degradation by Fungi: Potential Substrate for Bioremediation. Bioresource Technology 2010, 101, 2203–2209, doi:10.1016/j.biortech.2009.11.052.
  38. Borkowski, D.; Krucińska, I.; Draczyński, Z. Preparation of Nanocomposite Alginate Fibers Modified with Titanium Dioxide and Zinc Oxide. Polymers 2020, 12, 1040, doi:10.3390/polym12051040.
  39. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yucel, N. Adsorption of Cd(II), Cu(II) and Ni(II) Ions by Lemna Minor L.: Effect of Physicochemical Environment. Journal of Hazardous Materials 2005, 126, 96–104, doi:10.1016/j.jhazmat.2005.06.012.
  40. Wang, R.; Liang, R.; Dai, T.; Chen, J.; Shuai, X.; Liu, C. Pectin-Based Adsorbents for Heavy Metal Ions: A Review. Trends in Food Science & Technology 2019, 91, 319–329, doi:10.1016/j.tifs.2019.07.033.
  41. Faure, A.M.; Koppenol, W.H.; Nyström, L. Iron(II) Binding by Cereal Beta-Glucan. Carbohydrate Polymers 2015, 115, 739– 743, doi:10.1016/j.carbpol.2014.07.038.
  42. Górecka, D.; Stachowiak, J. Sorption of Copper, Zinc and Cobalt by Oat and Oat Products. Nahrung 2002, 46, 96–99, doi:10.1002/1521-3803(20020301) 46:2<96::AID - FOOD96>3.0.CO;2-1.
  43. Lach, J.; Okoniewska, E.; Ociepa-Kubicka, A.; Szymonik, A. Adsorpcja Ołowiu Na Modyfikowanym Węglu Aktywnym ROW 08 Supra (in Polish). Annual Set The Environment Protection Rocznik Ochrona Środowiska 2015, 17, 692–709.
  44. Argun, M.E.; Güclü, D.; Karatas, M. Adsorption of Reactive Blue 114 Dye by Using a New Adsorbent: Pomelo Peel. Journal of Industrial and Engineering Chemistry 2014, 20, 1079–1084, doi:10.1016/j.jiec.2013.06.045.
DOI: https://doi.org/10.2478/ftee-2023-0012 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 11 - 25
Published on: Jul 4, 2023
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: 6 times per year

© 2023 P. Miros-Kudra, P. Sobczak, K. Gzyra-Jagieła, M. Ciepliński, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.