Have a personal or library account? Click to login
Study on Low-Velocity Impact Behavior of Twaron® Fabric Subjected to Double-Impactor Impact from a Numerical Analysis Perspective Cover

Study on Low-Velocity Impact Behavior of Twaron® Fabric Subjected to Double-Impactor Impact from a Numerical Analysis Perspective

By: Canyi Huang,  Lina Cui,  Yiping Qiu and  Yajun Liu  
Open Access
|Apr 2023

References

  1. 1. Nilakantan, Gaurav, and Steven Nutt. Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets. Defence technology 14.3 (2018): 165–178.
  2. 2. Yang, Cheng-Chou, Tuan Ngo, and Phuong Tran. Influences of weaving architectures on the impact resistance of multi-layer fabrics. Materials & Design 85 (2015): 282-295.
  3. 3. Nipanjan Nayak, Chandra Sekher, Yerramalli, AsimTewari. Experimental investigation of the impact resistance on KEVLAR XP S308® fabric impacted with truncated ogive projectile subjected to pre-tension. Int J Impact Eng 2022,163, 104165.
  4. 4. Hongxu Wang, DakshithaWeerasinghe, DamithMohotti, Paul J.Hazell, V.P.W.Shim, KrishnaShankar, Evgeny V. Morozov. On the impact response of UHMWPE woven fabrics: Experiments and simulations. International Journal of Mechanical Sciences. 2021,204, 106574.
  5. 5. Yanfei Yang, Yanchen Liu, Sainan Xue, Xiangling Sun. Multi-scale finite element modeling of ballistic impact onto woven fabric involving fiber bundles. Composite Structures,2021,267, 113856.
  6. 6. Haolei Mou, Jiang Xie, Hui Pei, Zhenyu Feng, Hongzhang Geng. Ballistic impact tests and stacked shell simulation analysis of aramid fabric containment system. Aerospace Science and Technology. 2020, 107, 106344.
  7. 7. Xu, Wanli, Zhijia Dong, and Pibo Ma. Finite element analyses of auxetic warp-knitted fabric deformation behaviors under low-velocity impact loading. The Journal of The Textile Institute 111.11 (2020): 1578-1586.
  8. 8. Zeng, Haoxian, Xiaogang Chen, and Yanfei Yang. Influences of Combined Section in Three-dimensional Networked Fabric against Ballistic Impact. Applied Composite Materials (2021): 1-15.
  9. 9. Palta Emre, Fang Howie. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics. Composite Structures 2019; 207:488–580.
  10. 10. Giannaros, E, Kotzakolios, A., Sotiriadis, G., Tsantzalis, S, & Kostopoulos, V. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation. Composite Structures, 204(2018), 745-754.
  11. 11. Yang, Yanfei, and Xiaogang Chen. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact. Composite Structures 224 (2019): 111015.
  12. 12. Chu, Y, Rahman, M. R, Min, S., & Chen, X. Experimental and numerical study of inter-yarn friction affecting mechanism on ballistic performance of Twaron® fabric. Mechanics of Materials, 148(2020), 103421.
  13. 13. Miao, H., Wu, Z., Ying, Z., & Hu, X.. The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Composite Structures, 227(2019), 111343.
  14. 14. Yadav, K., Upadhyay, A. K., & Shukla, K. K. Effect of obliquity on ballistic impact response of plain-woven fabric. International Journal of Materials and Structural Integrity, (2019)13(1-3), 93–109.
  15. 15. Feito, N., Loya, J. A., Muñoz-Sánchez, A., & Das, R. Numerical modelling of ballistic impact response at low velocity in aramid fabrics. Materials, (2019)12(13), 2087.
  16. 16. Palta, Emre, and Howie Fang. On a multi-scale finite element model for evaluating ballistic performance of multi-ply woven fabrics.Composite Structures 207 (2019): 488-508.
  17. 17. Grujicic M, Hariharan a, Pandurangan B, Yen CF, Cheeseman Ba, Wang Y, Zheng JQ. Fiber-level modeling of dynamic strength of kevlar® KM2 ballistic fabric. J Mater Eng Perform 2012;21(7):1107–19.
  18. 18. Zhang, Y, Ju, J. W, Zhu, H, Guo, Q, & Yan, Z. Micromechanics based multi-level model for predicting the coefficients of thermal expansion of hybrid fiber reinforced concrete. Construction and Building Materials, 190(2018), 948-963.
  19. 19. Ivanov I, Tabiei A. Loosely woven fabric model with viscoelastic crimped fibers for ballistic impact simulations. Int J Numer Meth Eng 2004;61(10):1565–83.
  20. 20. Shahkarami a, Vaziri R. A continuum shell finite element model for impact simulation of woven fabrics. Int J Impact Eng 2007;34(1):104–19.
  21. 21. Fang H, Gutowski M, Disogra M, Wang Q. A numerical and experimental study of woven fabric material under ballistic impacts. Adv Eng Softw (2016), 96:14–28.
  22. 22. Liu, L, Yang, Z., Liu, X, Chen, W, Zhao, Z, & Luo, G. Yarn dynamic tensile behavior and meso-scale numerical simulation method for STF-Kevlar fabrics. Thin-Walled Structures, 159 (2021), 107319.
  23. 23. Zeng, H., Chen, X., & Yang, Y.. Influences of Combined Section in Three-dimensional Networked Fabric against Ballistic Impact. Applied Composite Materials, (2021)1-15.
  24. 24. Giannaros, E., Kotzakolios, A., Sotiriadis, G., Tsantzalis, S., & Kostopoulos, V. On fabric materials response subjected to ballistic impact using meso-scale modeling. Numerical simulation and experimental validation. Composite Structures, 204, (2018) 745-754.
  25. 25. Priyanka, P, Mali, H. S, & Dixit, A. Mesoscale numerical characterization of Kevlar and carbon–Kevlar hybrid plain-woven fabric compression behavior. Journal of Materials Engineering and Performance, (2019)28(9), 5749-5762.
  26. 26. Feito, N., Loya, J. A., Muñoz-Sánchez, A., & Das, R. Numerical modelling of ballistic impact response at low velocity in aramid fabrics. Materials, (2019)12(13), 2087.
  27. 27. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. A numerical study on the influence of hole defects on impact behavior of Twaron® fabric subjected to low-velocity impacts. Journal of Engineered Fibers and Fabrics, 2021,16: 1–18.
  28. 28. Wang, H, Weerasinghe, D, Mohotti, D, Hazell, P. J, Shim, V. P. W, Shankar, K., & Morozov, E. V. On the Impact Response of UHMWPE Woven Fabrics: Experiments and Simulations. International Journal of Mechanical Sciences, (2021)106574.
  29. 29. Canyi Huang, Lina Cui, Yajun Liu, Hong Xia, Yiping Qiu, Qing-Qing Ni. Low-velocity drop weight impact behavior of Twaron® fabric investigated using experimental and numerical simulations. Int J Impact Eng, (2021)149, 103796.
  30. 30. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. A numerical study on the low-velocity impact behavior of the Twaron® fabric subjected to oblique impact. Reviews on Advanced Materials Science, 2021,60:980-994.
  31. 31. Hairong Miao, Zhenyu Wu, Zhiping Ying, Xudong Hu. The numerical and experimental investigation on low-velocity impact response of composite panels: Effect of fabric architecture. Composite Structures 227 (2019) 111343.
  32. 32. Canyi Huang, Lina Cui, Hong Xia, Yiping Qiu, Qing-Qing Ni. Influence of crimp and inter-yarn friction on the mechanical properties of woven fabric under uniaxial/biaxial tensile loading. FIBRES & TEXTILES in Eastern Europe, 2020(28): 43-52.
  33. 33. Yanfei Yang, Xiaogang Chen. Investigation on energy absorption efficiency of each layer in ballistic amour panel for applications in hybrid design. Composite Structure, 164 (2017), pp. 1-9.
DOI: https://doi.org/10.2478/ftee-2023-0005 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 38 - 51
Published on: Apr 19, 2023
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Canyi Huang, Lina Cui, Yiping Qiu, Yajun Liu, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.