Have a personal or library account? Click to login
Impact of Clothing Size on Thermal Insulation – A Pilot Study Cover

Impact of Clothing Size on Thermal Insulation – A Pilot Study

Open Access
|Apr 2023

Figures & Tables

Fig. 1.

The clothing used for the tests: a) underwear (U), b) set 1 (S1) (energy sector), c) set 2 (S2) (chemical industry)
The clothing used for the tests: a) underwear (U), b) set 1 (S1) (energy sector), c) set 2 (S2) (chemical industry)

Fig. 2.

Method of calculating the total air volume schematically presented
Method of calculating the total air volume schematically presented

Fig. 3.

Percentage of the difference between the values of thermal insulation (in static and dynamic conditions) for individual sizes of outerwear (parallel method)
Percentage of the difference between the values of thermal insulation (in static and dynamic conditions) for individual sizes of outerwear (parallel method)

Fig. 4.

Total air volume: from the skin of the manikin to the surface of the outerwear (Vt_U+Si)
Total air volume: from the skin of the manikin to the surface of the outerwear (Vt_U+Si)

Fig. 5.

3D scan images of manikin dressed with underwear and set S2 in different variants: a) size 50), b) size 54, c) size 56
3D scan images of manikin dressed with underwear and set S2 in different variants: a) size 50), b) size 54, c) size 56

Fig. 6.

Relationship between the clothing’s total thermal insulation (static and dynamic) and air volume
Relationship between the clothing’s total thermal insulation (static and dynamic) and air volume

Fig. 7.

Relationship between the clothing’s total thermal insulation (static and dynamic) and the air gap size
Relationship between the clothing’s total thermal insulation (static and dynamic) and the air gap size

The equations for the relationship between the clothing’s total thermal insulation (in static and dynamic test conditions), total air volume (Vt), and air gap size (dsir)

Test conditionsTotal air volume Vt [dm3]Average air gap dair [mm]
staticIt = −5*10−5*Vt2 + 0.0047*Vt + 0.104 (2)It = −0.0001*dair2 + 0.0071*dair + 0.104 (3)
dynamicItr = −4*10−5*Vt2 + 0.0036*Vt + 0.088 (4)Itr = −9*10−5*dair2 + 0.0053*dair + 0.088 (5)

Data obtained from the manufacturer describing the different sizes

SizeHeight [cm]Circumference
chest [cm]waist [cm]collar [cm]
50170-17696-10088-9240-41
54176-182104-10896-10042-43
56182-188108-112100-14043-44

A detailed description of the tested clothing

NameMaterial compositionNormative requirementsIndustrial application
Outerwear clothing
Set S1jacket and waist-length pants79% cotton, 20% polyester, 1% antistatic fiber; Hydro-Tec finish; 260 g/m2EN ISO 13688:2013 [21], EN ISO 11611:2015 [22], EN 11612:2015 [23], EN 1149-5:2018 [24], EN 13034:2005 [25], EN ISO 14116:2015 [26], IEC 61482-2:2018 [27]power industry, chemical industry, welding and hot factors, explosion hazard zone, high visibility
Set S2acid-proof jacket and acid-proof dungarees80% polyester, 20% cotton; 225 g/m2EN ISO 13688:2013 [21], EN 13034:2005 [25]chemical industry
Underwear
Ulong-sleeved t-shirt and underpants59% Protex, 39% Cotton, 2% negastat; 205 g/m2EN ISO 13688:2013 [21], EN ISO 11612:2015 [22], EN 1149-5:2018 [24]gas industry, fuel industry, explosion hazard zone

Air volume, air gap size, total thermal Insulation (mean value ± standard deviation) calculated by parallel method for static and dynamic test conditions

VariantsSizeVt [dm3]dair [mm]Total thermal insulation It [m2oC/W]Resultant total thermal insulation Itr [m2oC/W]
U5416100.164±0.0010.131±0.000
U_S1(50)5034210.204±0.0010.166±0.000
U_S1(54)5439290.210±0.0010.172±0.000
U_S1(56)5647300.217±0.0000.169±0.000
U_S2(50)5034210.202±0.0000.160±0.000
U_S2(54)5448240.205±0.0020.164±0.000
U_S2(56)5650290.209±0.0000.165±0.000
DOI: https://doi.org/10.2478/ftee-2023-0001 | Journal eISSN: 2300-7354 | Journal ISSN: 1230-3666
Language: English
Page range: 1 - 8
Published on: Apr 19, 2023
Published by: Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Magdalena Młynarczyk, Joanna Orysiak, Jarosław Jankowski, Piotr Prus, published by Łukasiewicz Research Network, Institute of Biopolymers and Chemical Fibres
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.