References
- Andréassian, V., Mander, Ü., Pae, T. 2016. The Budyko hypothesis before Budyko: the hydrological legacy of Evald Oldekop. – Journal of Hydrology, 535, 386–391. https://doi.org/10.1016/j.jhydrol.2016.02.002.
- Are, M., Kauer, K., Kaart, T., Selge, A., Astover, A., Reintam, E. 2020. Water stability of soil aggregates in a 50-year-old soil formation experiment on calcareous glacial till. – Eurasian Soil Science, 53, 619–631. http://doi.org/10.1134/S1064229320050026.
- Arold, I. 2005. Estonian Landscapes. (Eesti Maastikud). Tartu, Tartu Ülikooli Kirjastus. 453 pp. (In Estonian).
- Brutsaert, W. 2005. Hydrology: An Introduction. Cambridge, Cambridge University Press. 618 pp.
- Carlson, K.M., Goodman, L.K., May-Tobin, C.C. 2015. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. – Environmental Research Letters, 10(7), 074006.
- Carneiro, L., Ostroski, A., Mercuri, E.G.F. 2020. Trophic state index for heavily impacted watersheds: modeling the influence of diffuse pollution in water bodies. – Hydrological Sciences Journal, 65(15), 2548–2560. https://doi.org/10.1080/02626667.2020.1828588.
- Chow, V.T., Maidment, D.R., Mays, L.W. 1988. Applied Hydrology. New York, McGraw-Hill. 572 pp.
- Couwenberg, J., Dommain, R., Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in south–east Asia. – Global Change Biology, 16(6), 1715–1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x.
- Di Buò, B., D’Ignazio, M., Selänpää, J., Haikola, M., Länsivaara, T., Di Sante, M. 2019. Investigation and geotechnical characterization of Perniö clay, Finland. – AIMS Geosciences, 5(3), 591–616.
- Dias, N.L., Kan, A. 1999. A hydrometeorological model for basin□wide seasonal evapotranspiration. – Water Resources Research, 35(11), 3409–3418.
- Domeneghetti, A., Castellarin, A., Brath, A. 2012. Assessing rating-curve uncertainty and its effects on hydraulic model calibration. – Hydrology and Earth System Sciences, 16(4), 1191–1202.
- Duchon, C.E., Essenberg, G.R. 2001. Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. – Water Resources Research, 37(12), 3253–3263.
- Flerchinger, G.N., Cooley, K.R. 2000. A ten-year water balance of a mountainous semi-arid watershed. – Journal of Hydrology, 237(1–2), 86–99.
- Georgievsky, M.V., Mamaeva, M.A. 2020. Water resources of the Russian part of the Baltic Sea basin and their possible changes under global warming. – Negm, A.M., Zelenakova, M., Kubiak-Wójcicka, K. (eds.). Water Resources Quality and Management in Baltic Sea Countries. Cham, Switzerland, Springer, 159–208.
- Groisman, P.Y., Legates, D.R. 1994. The accuracy of United States precipitation data. – Bulletin of the American Meteorological Society, 75(2), 215–228.
- Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H. 2009. Controls on the carbon balance of tropical peatlands. – Ecosystems, 12, 873–887. https://doi.org/10.1007/s10021-008-9209-1.
- Hoeltgebaum, L.E.B. 2021. Quantifying mass and energy balance terms at the watershed scale: a case study at Wahoo Creek. (Quantificação dos termos dos balanços de massa e energia na escala da bacia hidrográfica: estudo de caso em Wahoo Creek). – Doctoral Dissertation. Curitiba, Brazil, Federal University of Paraná. 140 pp. (In Portuguese).
- Istanbulluoglu, E., Wang, T., Wright, O.M., Lenters, J.D. 2012. Interpretation of hydrologic trends from a water balance perspective: The role of groundwater storage in the Budyko hypothesis. – Water Resources Research, 48(3), W00H16.
- Jauhiainen, J., Hooijer, A., Page, S.E. 2012. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. – Biogeosciences, 9(2), 617–630.
- Jauhiainen, J., Limin, S., Silvennoinen, H., Vasander, H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. – Ecology, 89(12), 3503–3514. https://doi.org/10.1890/07-2038.1.
- Kalvīte, Z., Lībiete, Z., Kļaviņš, I., Bārdule, A., Bičkovskis, K. 2021. The impact of beaver dam removal on the chemical properties of water in drainage ditches in peatland forests. – Scandinavian Journal of Forest Research, 36(1), 1–14.
- Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). – Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015.
- Kõlli, R., Astover, A., Noormets, M., Tõnutare, T., Szajdak, L. 2009. Histosol as an ecologically active constituent of peatland: a case study from Estonia. – Plant and Soil, 315, 3–17. https://doi.org/10.1007/s11104-008-9792-0.
- Kont, A., Jaagus, J., Oja, T., Järvet, A., Rivis, R. 2002. Biophysical impacts of climate change on some terrestrial ecosystems in Estonia. – GeoJournal, 57, 169–181. https://doi.org/10.1023/B:GEJO.0000003614.07684.60.
- Krasnova, A. 2022. Greenhouse gas fluxes in hemiboreal forest ecosystems. – Doctoral Dissertation. Tartu, Estonia, University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography. 185 pp.
- Krasnova, A., Soosaar, K., Uri, V., Mander, Ü., Krasnov, D., Noe, S. 2019. Hemiboreal forests under the 2018 Europe heat wave. – Proceedings of the EGU General Assembly, Austria, 7-12 April 2019. Vienna, 21, EGU2019-8604.
- Kumpulainen, R.A., Greiling, R.O. 2011. Evidence for late Neoproterozoic glaciation in the central Scandinavian Caledonides. – Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.). The Geological Record of Neoproterozoic Glaciations. London, Geological Society of London, Memoir 36, 623–628.
- Larson, L.W., Peck, E.L. 1974. Accuracy of precipitation measurements for hydrologic modeling. – Water Resources Research, 10(4), 857–863.
- Legates, D.R., DeLiberty, T.L. 1993. Precipitation measurement biases in the United States. – JAWRA Journal of the American Water Resources Association, 29(5), 855–861.
- Liivamägi, S., Somelar, P., Mahaney, W.C., Kirs, J., Vircava, I., Kirsimäe, K. 2014. Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude? – Geology, 42(4), 323–326.
- Mazur, K., Schoenheinz, D., Biemelt, D., Schaaf, W., Grünewald, U. 2011. Observation of hydrological processes and structures in the artificial Chicken Creek catchment. – Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 74–86. https://doi.org/10.1016/j.pce.2010.10.001.
- McIntyre, N., Wheater, H., Lees, M. 2002. Estimation and propagation of parametric uncertainty in environmental models. – Journal of Hydroinformatics, 4(3), 177–198. https://doi.org/10.2166/hydro.2002.0018.
- Mohajerani, H., Zema, D.A., Lucas-Borja, M.E., Casper, M. 2021. Understanding the water balance and its estimation methods. – Rodrigo-Comino, J. (ed.). Precipitation. Amsterdam, Oxford, Elsevier, 193–221.
- Nash, J.E., Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I–A discussion of principles. – Journal of Hydrology, 10(3), 282–290.
- Nemri, S., Kinnard, C. 2020. Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability. – Journal of Hydrology, 582, 124474. https://doi.org/10.1016/j.jhydrol.2019.124474.
- Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262(2), 71–81. https://doi.org/10.1016/j.foreco.2010.09.013.
- Noe, S.M., Niinemets, Ü., Krasnova, A., Krasnov, D., Motallebi, A., Kängsepp, V., Jõgiste, K., Hõrrak, U., Komsaare, K., Mirme, S., Vana, M., Tammet, H., Bäck, J., Vesala, T., Kulmala, M., Petäjä, T., Kangur, A. 2015. SMEAR Estonia: Perspectives of a large-scale forest ecosystem–atmosphere research infrastructure. – Forestry Studies /Metsanduslikud Uurimused, 63(1), 56–84.
- Overeem, A., van den Besselaar, E., van der Schrier, G., Meirink, J.F., van der Plas, E., Leijnse, H. 2022. EURADCLIM: The European climatological high-resolution gauge-adjusted radar precipitation dataset. – Earth System Science Data, Discussions. https://doi.org/10.5194/essd-2022-334. (In review).
- Pan, X., Helgason, W., Ireson, A., Wheater, H. 2017. Field-scale water balance closure in seasonally frozen conditions. – Hydrology and Earth System Sciences, 21(11), 5401–5413.
- Perrin, C., Michel, C., Andréassian, V. 2003. Improvement of a parsimonious model for streamflow simulation. – Journal of Hydrology, 279(1–4), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
- Piotrowski, A.P., Napiorkowski, J.J., Osuch, M. 2019. Relationship between calibration time and final performance of conceptual rainfall-runoff models. – Water Resources Management, 33, 19–37. https://doi.org/10.1007/s11269-018-2085-3.
- Reaver, N.G., Kaplan, D.A., Klammler, H., Jawitz, J.W. 2020. Reinterpreting the Budyko framework. – Hydrology and Earth System Sciences, Discussions. https://doi.org/10.5194/hess-2020-584. (In review).
- Rice, J.S., Emanuel, R.E. 2019. Ecohydrology of interannual changes in watershed storage. – Water Resources Research, 55(10), 8238–8251.
- Richey, A.S., Thomas, B.F., Lo, M.-H., Famiglietti, J.S., Swenson, S., Rodell, M. 2015a. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. – Water Resources Research, 51(7), 5198–5216. https://doi.org/10.1002/2015WR017351.
- Richey, A.S., Thomas, B.F., Lo, M.-H., Reager, J.T., Famiglietti, J.S., Voss, K., Swenson, S., Rodell, M. 2015b. Quantifying renewable groundwater stress with GRACE. – Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349.
- Safeeq, M., Bart, R.R., Pelak, N.F., Singh, C.K., Dralle, D.N., Hartsough, P., Wagenbrenner, J.W. 2021. How realistic are water□balance closure assumptions? A demonstration from the southern sierra critical zone observatory and kings river experimental watersheds. – Hydrological Processes, 35(5), e14199. https://doi.org/10.1002/hyp.14199.
- Scott, R.L., Biederman, J.A. 2019. Critical zone water balance over 13 years in a semiarid savanna. – Water Resources Research, 55(1), 574–588. https://doi.org/10.1029/2018WR023477.
- Searcy, J.K., Hardison, C.H. 1960. Double-Mass Curves. Manual of hydrology: Part 1. General Surface Water Techniques, Geological Survey Water-Supply Paper 1541-B. Washington D.C., US Government Printing Office. 66 pp.
- Sikorska, A.E., Scheidegger, A., Banasik, K., Rieckermann, J. 2013. Considering rating curve uncertainty in water level predictions. – Hydrology and Earth System Sciences, 17(11), 4415–4427. https://doi.org/10.5194/hess-17-4415-2013.
- Steinbakk, G.H., Thorarinsdottir, T.L., Reitan, T., Schlichting, L., Hølleland, S., Engeland, K. 2016. Propagation of rating curve uncertainty in design flood estimation. – Water Resources Research, 52(9), 6897–6915. https://doi.org/10.1002/2015WR018516.
- Tamm, O., Maasikamäe, S., Padari, A., Tamm, T. 2018. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. – Catena, 167, 78–89. https://doi.org/10.1016/j.catena.2018.04.029.
- Vaisala. 2012. User’s guide: Vaisala weather transmitter, WXT520. Helsinki, Finland, Vaisala Oyj. 167 pp.
- Valéry, A. 2010. Modeling precipitation – flow under snow influence: Elaboration of a snow module and evaluation on 380 catchment areas. (Modélisation precipitations – débit sous influence nivale: Elaboration d’un module neige et évaluation sur 380 bassins versants). – Doctoral thesis. Paris, France, Institut des Sciences et Industries du Vivant et de l’Environnement AgroParisTech. 417 pp. (In French)
- Vanags-Duka, M., Bārdule, A., Butlers, A., Upenieks, E.M., Lazdiņš, A., Purviņa, D., Līcīte, I. 2022. GHG emissions from drainage ditches in peat extraction sites and peatland forests in hemiboreal Latvia. – Land, 11(12), 2233. https://doi.org/10.3390/land11122233.
- Verwer, C., van der Meer, P., Nabuurs, G.-J. 2008. Review of carbon flux estimates and other greenhouse gas emissions from oil palm cultivation in tropical peatlands – Identifying the gaps in knowledge. Alterra-rapport No. 1731. Wageningen, The Netherlands, Alterra. 44 pp. https://edepot.wur.nl/38226.
- Vishwakarma, B.D., Zhang, J., Sneeuw, N. 2021. Downscaling GRACE total water storage change using partial least squares regression. – Scientific Data, 8, 95. https://doi.org/10.1038/s41597-021-00862-6.
- Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A. 2008. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. – Water Resources Research, 44(12).
- Wang, S., Huang, J., Li, J., Rivera, A., McKenney, D.W., Sheffield, J. 2014. Assessment of water budget for sixteen large drainage basins in Canada. – Journal of Hydrology, 512, 1–15. https://doi.org/10.1016/j.jhydrol.2014.02.058.
- Wang, S., Pan, M., Mu, Q., Shi, X., Mao, J., Brümmer, C., Jassal, R.S., Krishnan, P., Li, J., Black, T.A. 2015. Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. – Journal of Hydrometeorology, 16(4), 1540–1560. https://doi.org/10.1175/JHM-D-14-0189.1.
- Waring, R.H., Running S.V. 1998. Forest Ecosystems. Analysis at Multiple Scales. San Diego, California, Academic Press. 370 pp.
- Wei, X., Huang, S., Huang, Q., Leng, G., Wang, H., He, L., Zhao, J., Liu, D. 2021. Identification of the interactions and feedbacks among watershed water-energy balance dynamics, hydrometeorological factors, and underlying surface characteristics. – Stochastic Environmental Research and Risk Assessment, 35, 69–81. https://doi.org/10.1007/s00477-020-01896-9.
- Woronko, B., Zagórski, Z., Cyglicki, M. 2022. Soil-development differentiation across a glacial–interglacial cycle, Saalian upland, E Poland. – Catena, 211, 105968. https://doi.org/10.1016/j.catena.2021.105968.