Have a personal or library account? Click to login
Water and carbon balances in a hemi-boreal forest Cover

Water and carbon balances in a hemi-boreal forest

Open Access
|Nov 2023

References

  1. Andréassian, V., Mander, Ü., Pae, T. 2016. The Budyko hypothesis before Budyko: the hydrological legacy of Evald Oldekop. – Journal of Hydrology, 535, 386–391. https://doi.org/10.1016/j.jhydrol.2016.02.002.
  2. Are, M., Kauer, K., Kaart, T., Selge, A., Astover, A., Reintam, E. 2020. Water stability of soil aggregates in a 50-year-old soil formation experiment on calcareous glacial till. – Eurasian Soil Science, 53, 619–631. http://doi.org/10.1134/S1064229320050026.
  3. Arold, I. 2005. Estonian Landscapes. (Eesti Maastikud). Tartu, Tartu Ülikooli Kirjastus. 453 pp. (In Estonian).
  4. Brutsaert, W. 2005. Hydrology: An Introduction. Cambridge, Cambridge University Press. 618 pp.
  5. Carlson, K.M., Goodman, L.K., May-Tobin, C.C. 2015. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. – Environmental Research Letters, 10(7), 074006.
  6. Carneiro, L., Ostroski, A., Mercuri, E.G.F. 2020. Trophic state index for heavily impacted watersheds: modeling the influence of diffuse pollution in water bodies. – Hydrological Sciences Journal, 65(15), 2548–2560. https://doi.org/10.1080/02626667.2020.1828588.
  7. Chow, V.T., Maidment, D.R., Mays, L.W. 1988. Applied Hydrology. New York, McGraw-Hill. 572 pp.
  8. Couwenberg, J., Dommain, R., Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in south–east Asia. – Global Change Biology, 16(6), 1715–1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x.
  9. Di Buò, B., D’Ignazio, M., Selänpää, J., Haikola, M., Länsivaara, T., Di Sante, M. 2019. Investigation and geotechnical characterization of Perniö clay, Finland. – AIMS Geosciences, 5(3), 591–616.
  10. Dias, N.L., Kan, A. 1999. A hydrometeorological model for basin□wide seasonal evapotranspiration. – Water Resources Research, 35(11), 3409–3418.
  11. Domeneghetti, A., Castellarin, A., Brath, A. 2012. Assessing rating-curve uncertainty and its effects on hydraulic model calibration. – Hydrology and Earth System Sciences, 16(4), 1191–1202.
  12. Duchon, C.E., Essenberg, G.R. 2001. Comparative rainfall observations from pit and aboveground rain gauges with and without wind shields. – Water Resources Research, 37(12), 3253–3263.
  13. Flerchinger, G.N., Cooley, K.R. 2000. A ten-year water balance of a mountainous semi-arid watershed. – Journal of Hydrology, 237(1–2), 86–99.
  14. Georgievsky, M.V., Mamaeva, M.A. 2020. Water resources of the Russian part of the Baltic Sea basin and their possible changes under global warming. – Negm, A.M., Zelenakova, M., Kubiak-Wójcicka, K. (eds.). Water Resources Quality and Management in Baltic Sea Countries. Cham, Switzerland, Springer, 159–208.
  15. Groisman, P.Y., Legates, D.R. 1994. The accuracy of United States precipitation data. – Bulletin of the American Meteorological Society, 75(2), 215–228.
  16. Hirano, T., Jauhiainen, J., Inoue, T., Takahashi, H. 2009. Controls on the carbon balance of tropical peatlands. – Ecosystems, 12, 873–887. https://doi.org/10.1007/s10021-008-9209-1.
  17. Hoeltgebaum, L.E.B. 2021. Quantifying mass and energy balance terms at the watershed scale: a case study at Wahoo Creek. (Quantificação dos termos dos balanços de massa e energia na escala da bacia hidrográfica: estudo de caso em Wahoo Creek). – Doctoral Dissertation. Curitiba, Brazil, Federal University of Paraná. 140 pp. (In Portuguese).
  18. Istanbulluoglu, E., Wang, T., Wright, O.M., Lenters, J.D. 2012. Interpretation of hydrologic trends from a water balance perspective: The role of groundwater storage in the Budyko hypothesis. – Water Resources Research, 48(3), W00H16.
  19. Jauhiainen, J., Hooijer, A., Page, S.E. 2012. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. – Biogeosciences, 9(2), 617–630.
  20. Jauhiainen, J., Limin, S., Silvennoinen, H., Vasander, H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. – Ecology, 89(12), 3503–3514. https://doi.org/10.1890/07-2038.1.
  21. Kalvīte, Z., Lībiete, Z., Kļaviņš, I., Bārdule, A., Bičkovskis, K. 2021. The impact of beaver dam removal on the chemical properties of water in drainage ditches in peatland forests. – Scandinavian Journal of Forest Research, 36(1), 1–14.
  22. Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). – Geoscientific Model Development, 8(11), 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015.
  23. Kõlli, R., Astover, A., Noormets, M., Tõnutare, T., Szajdak, L. 2009. Histosol as an ecologically active constituent of peatland: a case study from Estonia. – Plant and Soil, 315, 3–17. https://doi.org/10.1007/s11104-008-9792-0.
  24. Kont, A., Jaagus, J., Oja, T., Järvet, A., Rivis, R. 2002. Biophysical impacts of climate change on some terrestrial ecosystems in Estonia. – GeoJournal, 57, 169–181. https://doi.org/10.1023/B:GEJO.0000003614.07684.60.
  25. Krasnova, A. 2022. Greenhouse gas fluxes in hemiboreal forest ecosystems. – Doctoral Dissertation. Tartu, Estonia, University of Tartu, Institute of Ecology and Earth Sciences, Department of Geography. 185 pp.
  26. Krasnova, A., Soosaar, K., Uri, V., Mander, Ü., Krasnov, D., Noe, S. 2019. Hemiboreal forests under the 2018 Europe heat wave. – Proceedings of the EGU General Assembly, Austria, 7-12 April 2019. Vienna, 21, EGU2019-8604.
  27. Kumpulainen, R.A., Greiling, R.O. 2011. Evidence for late Neoproterozoic glaciation in the central Scandinavian Caledonides. – Arnaud, E., Halverson, G.P., Shields-Zhou, G. (eds.). The Geological Record of Neoproterozoic Glaciations. London, Geological Society of London, Memoir 36, 623–628.
  28. Larson, L.W., Peck, E.L. 1974. Accuracy of precipitation measurements for hydrologic modeling. – Water Resources Research, 10(4), 857–863.
  29. Legates, D.R., DeLiberty, T.L. 1993. Precipitation measurement biases in the United States. – JAWRA Journal of the American Water Resources Association, 29(5), 855–861.
  30. Liivamägi, S., Somelar, P., Mahaney, W.C., Kirs, J., Vircava, I., Kirsimäe, K. 2014. Late Neoproterozoic Baltic paleosol: Intense weathering at high latitude? – Geology, 42(4), 323–326.
  31. Mazur, K., Schoenheinz, D., Biemelt, D., Schaaf, W., Grünewald, U. 2011. Observation of hydrological processes and structures in the artificial Chicken Creek catchment. – Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 74–86. https://doi.org/10.1016/j.pce.2010.10.001.
  32. McIntyre, N., Wheater, H., Lees, M. 2002. Estimation and propagation of parametric uncertainty in environmental models. – Journal of Hydroinformatics, 4(3), 177–198. https://doi.org/10.2166/hydro.2002.0018.
  33. Mohajerani, H., Zema, D.A., Lucas-Borja, M.E., Casper, M. 2021. Understanding the water balance and its estimation methods. – Rodrigo-Comino, J. (ed.). Precipitation. Amsterdam, Oxford, Elsevier, 193–221.
  34. Nash, J.E., Sutcliffe, J.V. 1970. River flow forecasting through conceptual models part I–A discussion of principles. – Journal of Hydrology, 10(3), 282–290.
  35. Nemri, S., Kinnard, C. 2020. Comparing calibration strategies of a conceptual snow hydrology model and their impact on model performance and parameter identifiability. – Journal of Hydrology, 582, 124474. https://doi.org/10.1016/j.jhydrol.2019.124474.
  36. Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262(2), 71–81. https://doi.org/10.1016/j.foreco.2010.09.013.
  37. Noe, S.M., Niinemets, Ü., Krasnova, A., Krasnov, D., Motallebi, A., Kängsepp, V., Jõgiste, K., Hõrrak, U., Komsaare, K., Mirme, S., Vana, M., Tammet, H., Bäck, J., Vesala, T., Kulmala, M., Petäjä, T., Kangur, A. 2015. SMEAR Estonia: Perspectives of a large-scale forest ecosystem–atmosphere research infrastructure. – Forestry Studies /Metsanduslikud Uurimused, 63(1), 56–84.
  38. Overeem, A., van den Besselaar, E., van der Schrier, G., Meirink, J.F., van der Plas, E., Leijnse, H. 2022. EURADCLIM: The European climatological high-resolution gauge-adjusted radar precipitation dataset. – Earth System Science Data, Discussions. https://doi.org/10.5194/essd-2022-334. (In review).
  39. Pan, X., Helgason, W., Ireson, A., Wheater, H. 2017. Field-scale water balance closure in seasonally frozen conditions. – Hydrology and Earth System Sciences, 21(11), 5401–5413.
  40. Perrin, C., Michel, C., Andréassian, V. 2003. Improvement of a parsimonious model for streamflow simulation. – Journal of Hydrology, 279(1–4), 275–289. https://doi.org/10.1016/S0022-1694(03)00225-7.
  41. Piotrowski, A.P., Napiorkowski, J.J., Osuch, M. 2019. Relationship between calibration time and final performance of conceptual rainfall-runoff models. – Water Resources Management, 33, 19–37. https://doi.org/10.1007/s11269-018-2085-3.
  42. Reaver, N.G., Kaplan, D.A., Klammler, H., Jawitz, J.W. 2020. Reinterpreting the Budyko framework. – Hydrology and Earth System Sciences, Discussions. https://doi.org/10.5194/hess-2020-584. (In review).
  43. Rice, J.S., Emanuel, R.E. 2019. Ecohydrology of interannual changes in watershed storage. – Water Resources Research, 55(10), 8238–8251.
  44. Richey, A.S., Thomas, B.F., Lo, M.-H., Famiglietti, J.S., Swenson, S., Rodell, M. 2015a. Uncertainty in global groundwater storage estimates in a Total Groundwater Stress framework. – Water Resources Research, 51(7), 5198–5216. https://doi.org/10.1002/2015WR017351.
  45. Richey, A.S., Thomas, B.F., Lo, M.-H., Reager, J.T., Famiglietti, J.S., Voss, K., Swenson, S., Rodell, M. 2015b. Quantifying renewable groundwater stress with GRACE. – Water Resources Research, 51(7), 5217–5238. https://doi.org/10.1002/2015WR017349.
  46. Safeeq, M., Bart, R.R., Pelak, N.F., Singh, C.K., Dralle, D.N., Hartsough, P., Wagenbrenner, J.W. 2021. How realistic are water□balance closure assumptions? A demonstration from the southern sierra critical zone observatory and kings river experimental watersheds. – Hydrological Processes, 35(5), e14199. https://doi.org/10.1002/hyp.14199.
  47. Scott, R.L., Biederman, J.A. 2019. Critical zone water balance over 13 years in a semiarid savanna. – Water Resources Research, 55(1), 574–588. https://doi.org/10.1029/2018WR023477.
  48. Searcy, J.K., Hardison, C.H. 1960. Double-Mass Curves. Manual of hydrology: Part 1. General Surface Water Techniques, Geological Survey Water-Supply Paper 1541-B. Washington D.C., US Government Printing Office. 66 pp.
  49. Sikorska, A.E., Scheidegger, A., Banasik, K., Rieckermann, J. 2013. Considering rating curve uncertainty in water level predictions. – Hydrology and Earth System Sciences, 17(11), 4415–4427. https://doi.org/10.5194/hess-17-4415-2013.
  50. Steinbakk, G.H., Thorarinsdottir, T.L., Reitan, T., Schlichting, L., Hølleland, S., Engeland, K. 2016. Propagation of rating curve uncertainty in design flood estimation. – Water Resources Research, 52(9), 6897–6915. https://doi.org/10.1002/2015WR018516.
  51. Tamm, O., Maasikamäe, S., Padari, A., Tamm, T. 2018. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. – Catena, 167, 78–89. https://doi.org/10.1016/j.catena.2018.04.029.
  52. Vaisala. 2012. User’s guide: Vaisala weather transmitter, WXT520. Helsinki, Finland, Vaisala Oyj. 167 pp.
  53. Valéry, A. 2010. Modeling precipitation – flow under snow influence: Elaboration of a snow module and evaluation on 380 catchment areas. (Modélisation precipitations – débit sous influence nivale: Elaboration d’un module neige et évaluation sur 380 bassins versants). – Doctoral thesis. Paris, France, Institut des Sciences et Industries du Vivant et de l’Environnement AgroParisTech. 417 pp. (In French)
  54. Vanags-Duka, M., Bārdule, A., Butlers, A., Upenieks, E.M., Lazdiņš, A., Purviņa, D., Līcīte, I. 2022. GHG emissions from drainage ditches in peat extraction sites and peatland forests in hemiboreal Latvia. – Land, 11(12), 2233. https://doi.org/10.3390/land11122233.
  55. Verwer, C., van der Meer, P., Nabuurs, G.-J. 2008. Review of carbon flux estimates and other greenhouse gas emissions from oil palm cultivation in tropical peatlands – Identifying the gaps in knowledge. Alterra-rapport No. 1731. Wageningen, The Netherlands, Alterra. 44 pp. https://edepot.wur.nl/38226.
  56. Vishwakarma, B.D., Zhang, J., Sneeuw, N. 2021. Downscaling GRACE total water storage change using partial least squares regression. – Scientific Data, 8, 95. https://doi.org/10.1038/s41597-021-00862-6.
  57. Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A. 2008. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. – Water Resources Research, 44(12).
  58. Wang, S., Huang, J., Li, J., Rivera, A., McKenney, D.W., Sheffield, J. 2014. Assessment of water budget for sixteen large drainage basins in Canada. – Journal of Hydrology, 512, 1–15. https://doi.org/10.1016/j.jhydrol.2014.02.058.
  59. Wang, S., Pan, M., Mu, Q., Shi, X., Mao, J., Brümmer, C., Jassal, R.S., Krishnan, P., Li, J., Black, T.A. 2015. Comparing evapotranspiration from eddy covariance measurements, water budgets, remote sensing, and land surface models over Canada. – Journal of Hydrometeorology, 16(4), 1540–1560. https://doi.org/10.1175/JHM-D-14-0189.1.
  60. Waring, R.H., Running S.V. 1998. Forest Ecosystems. Analysis at Multiple Scales. San Diego, California, Academic Press. 370 pp.
  61. Wei, X., Huang, S., Huang, Q., Leng, G., Wang, H., He, L., Zhao, J., Liu, D. 2021. Identification of the interactions and feedbacks among watershed water-energy balance dynamics, hydrometeorological factors, and underlying surface characteristics. – Stochastic Environmental Research and Risk Assessment, 35, 69–81. https://doi.org/10.1007/s00477-020-01896-9.
  62. Woronko, B., Zagórski, Z., Cyglicki, M. 2022. Soil-development differentiation across a glacial–interglacial cycle, Saalian upland, E Poland. – Catena, 211, 105968. https://doi.org/10.1016/j.catena.2021.105968.
DOI: https://doi.org/10.2478/fsmu-2023-0006 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 72 - 90
Submitted on: Apr 20, 2023
Accepted on: Sep 14, 2023
Published on: Nov 9, 2023
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Emílio Graciliano Ferreira Mercuri, Toomas Tamm, Steffen Manfred Noe, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.