Have a personal or library account? Click to login
The impact of soil warming on fine root trait responses of trees, deciduous vs. coniferous: a meta-analysis Cover

The impact of soil warming on fine root trait responses of trees, deciduous vs. coniferous: a meta-analysis

Open Access
|May 2023

References

  1. Bai E., Li S., Xu W., Li W., Dai W., Jiang P. 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. – New Phytologist, 199(2), 441–451.
  2. Björk R.G., Majdi H., Klemedtsson L., Lewis-Jonsson L., Molau U. 2007. Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. – New Phytologist, 176(4), 862–873.
  3. Easterling D.R., Meehl G.A., Parmesan C., Changnon S.A., Karl T.R., Mearns L.O. 2000. Climate extremes: observations, modeling, and impacts. – Science, 289(5487), 2068–2074.
  4. Feng J.X., Xiong D.C., Shi S.Z., Xu C.S., Zhong B.Y., Deng F., Chen Y.Y., Chen G.S., Yang Y.S. 2017. Effects of soil warming on the ecophysiological properties of the fine roots of Chinese fir (Cunninghamia lanceolata) seedlings. – Acta Ecologica Sinica, 37(1), 35–43.
  5. Förster A., Hertel D., Werner R., Leuschner C. 2021. Belowground consequences of converting broadleaf to conifer forest: Comparing the fine root systems of European beech and Scots pine. – Forest Ecology and Management, 496, 119457.
  6. Freschet G.T., Valverde-Barrantes O.J., Tucker C.M., Craine J.M., McCormack M.L., Violle C., Fort F., Blackwood C.B., Urban-Mead K.R., Iversen C.M., Bonis A., Comas L.H., Cornelissen J.H.C., Dong M., Guo D., Hobbie S.E., Holdaway R.J., Kembel S.W., Makita N., Onipchenko V.G., Picon-Cochard C., Reich P.B., de la Riva E.G., Smith S.W., Soudzilovskaia N.A., Tjoelker M.G., Wardle D.A., Roumet C. 2017. Climate, soil and plant functional types as drivers of global fine-root trait variation. – Journal of Ecology, 105(5), 1182–1196.
  7. Higgins J.P.T., Thompson S.G. 2002. Quantifying heterogeneity in a meta-analysis. – Statistics in Medicine, 21(11), 1539–1558.
  8. IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press. 1132 pp.
  9. Iversen C.M. 2014. Using root form to improve our understanding of root function. – New Phytologist, 203(3), 707–709.
  10. Jandl R., Ledermann T., Kindermann G., Weiss P. 2021. Soil organic carbon stocks in mixed-deciduous and coniferous forests in Austria. – Frontiers in Forests and Global Change, 4, 69.
  11. Kilpeläinen J., Domisch T., Lehto T., Piirainen S., Silvennoinen R., Repo T. 2022. Separating the effects of air and soil temperature on silver birch. Part I. Does soil temperature or resource competition determine the timing of root growth? – Tree Physiology, 42(12), 2480–2501.
  12. Kirfel K., Heinze S., Hertel D., Leuschner C. 2019. Effects of bedrock type and soil chemistry on the fine roots of European beech – A study on the belowground plasticity of trees. – Forest Ecology and Management, 444, 256–268.
  13. Kwatcho Kengdo S., Peršoh D., Schindlbacher A., Heinzle J., Tian Y., Wanek W., Borken W. 2022. Long-term soil warming alters fine root dynamics and morphology, and their ectomycorrhizal fungal community in a temperate forest soil. – Global Change Biology, 28(10), 3441–3458.
  14. Leppälammi-Kujansuu J., Ostonen I., Strömgren M., Nilsson L.O., Kleja D.B., Sah S.P., Helmisaari H.-S. 2013. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production. – Plant and Soil, 366(1–2), 287–303.
  15. Leuschner C., Hertel D. 2003. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. – Esser, K., Lüttge U., Beyschlag W., Hellwig F. (eds.). Progress in Botany, Vol. 64. Berlin, Heidelberg, Springer, 405–438.
  16. Leuschner C., Hertel D., Schmid I., Koch O., Muhs A., Hölscher D. 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. – Plant and Soil, 258(1), 43–56.
  17. Lin D., Xia J., Wan S. 2010. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. – New Phytologist, 188(1), 187–198.
  18. Lõhmus K., Oja T., Lasn R. 1989. Specific root area: a soil characteristic. – Plant and Soil, 119(2), 245–249.
  19. Makita N., Kosugi Y., Dannoura M., Takanashi S., Niiyama K., Kassim A.R., Nik A.R. 2012. Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest. – Tree Physiology, 32(3), 303–312.
  20. Malhotra A., Brice D.J., Childs J., Graham J.D., Hobbie E.A., Vander Stel H., Feron S.C., Hanson P.J., Iversen C.M. 2020. Peatland warming strongly increases fine-root growth. – Proceedings of the National Academy of Sciences, 117(30), 17627–17634.
  21. Melillo J.M., Butler S., Johnson J., Mohan J., Steudler P., Lux H., Burrows E., Bowles F., Smith R., Scott L., Vario C., Hill T., Burton A., Zhou Y.-M., Tang J. 2011. Soil warming, carbon – nitrogen interactions, and forest carbon budgets. – Proceedings of the National Academy of Sciences (PNAS), 108(23), 9508–9512.
  22. Nikolova P.S., Bauerle T.L., Häberle K.-H., Blaschke H., Brunner I., Matyssek R. 2020. Fine-root traits reveal contrasting ecological strategies in European beech and Norway spruce during extreme drought. – Frontiers in Plant Science, 11, 1211.
  23. Parts K., Tedersoo L., Schindlbacher A., Sigurdsson B.D., Leblans N.I.W., Oddsdóttir E.S., Borken W., Ostonen I. 2019. Acclimation of fine root systems to soil warming: comparison of an experimental setup and a natural soil temperature gradient. – Ecosystems, 22(3), 457–472.
  24. Reich P.B., Bermudez R., Montgomery R.A., Rich R.L., Rice K.E., Hobbie S.E., Stefanski A. 2022. Even modest climate change may lead to major transitions in boreal forests. – Nature, 608(7923), 540–545.
  25. Rezapour A., Truu M., Maddison M., Rohula-Okunev G., Tullus A., Uri V., Mander, Ü., Ostonen, I. 2022. Morphological variation in absorptive roots in Downy birch (Betula pubescens) and Norway spruce (Picea abies) forests growing on drained peat soils. – Forests, 13(1), 112. https://doi.org/10.3390/f13010112.
  26. Wang J., Defrenne C., McCormack M.L., Yang L., Tian D., Luo Y., Hou E., Yan T., Li Z., Bu W., Chen Y., Niu S. 2021. Fine-root functional trait responses to experimental warming: a global meta-analysis. – New Phytologist, 230(5), 1856–1867.
  27. Weemstra M., Kiorapostolou N., van Ruijven J., Mommer L., de Vries J., Sterck F. 2020. The role of fine-root mass, specific root length and life span in tree performance: a whole-tree exploration. – Functional Ecology, 34(3), 575–585.
  28. Zhang X., Xing Y., Yan G., Han S., Wang Q. 2018. Effects of precipitation change on fine root morphology and dynamics at a global scale: a meta-analysis. – Canadian Journal of Soil Science, 99(1), 1–11. https://doi.org/10.1139/cjss-2018-0114.
  29. Zhou Y., Tang J., Melillo J.M., Butler S., Mohan J.E. 2011. Root standing crop and chemistry after six years of soil warming in a temperate forest. – Tree Physiology, 31(7), 707–717.
DOI: https://doi.org/10.2478/fsmu-2022-0013 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 67 - 75
Submitted on: Dec 4, 2022
Accepted on: Dec 30, 2022
Published on: May 4, 2023
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Azadeh Rezapour, Mohammadreza Labbafi, Tõnu Oja, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.