Have a personal or library account? Click to login
Järvselja metsade tormikahjustuste seire mehitamata õhusõidukitega Cover

Järvselja metsade tormikahjustuste seire mehitamata õhusõidukitega

Open Access
|Feb 2023

References

  1. Brovkina, O., Cienciala, E., Surový, P., Janata, P. 2018. Unmanned aerial vehicles (UAV) for assessment of qualitative classification of Norway spruce in temperate forest stands. – Geo-spatial Information Science, 21(1), 12–20. https://doi.org/10.1080/10095020.2017.1416994.
  2. DJI. [WWW document]. – URL https://www.dji.com/ee/phantom-3-pro. [Accessed 7 June 2022].
  3. Keskkonnaamet. 2010. Nature protection management plan 2012–2021 for Järvselja nature reserve. (Järvselja looduskaitseala kaitsekorralduskava 2012–2021). [WWW document]. – URL https://infoleht.keskkonnainfo.ee/GetFile.aspx?fail=-406250147. [Accessed 7 June 2022]. (In Estonian).
  4. Kokamägi, K., Türk, K., Liba, N. 2020. UAV photogrammetry for volume calculations. – Agronomy Research, 18(3), 2087−2102.
  5. Laurin, G.V., Francini, S., Luti, T., Chirici, G., Pirotti, F., Papale, D. 2021. Satellite open data to monitor forest damage caused by extreme climate-induced events: a case study of the Vaia storm in Northern Italy. – Forestry: An International Journal of Forest Research, 94(3), 407–416. https://doi.org/10.1093/forestry/cpaa043.
  6. Minařík, R., Langhammer, J. 2016. Use of a multispectral UAV photogrammetry for detection and tracking of forest disturbance dynamics. – The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 711–718. http://dx.doi.org/10.5194/isprsarchives-XLI-B8-711-2016.
  7. Rahu, O., Siim, K. 2022. Assessment of storm damage in the Järvselja Training and Experimental Forestry District by photogrammetric methods. (Järvselja õppeja katsemetskonna tormikahjude hindamine fotogrammmeetriliste meetoditega). – Master thesis. Tartu, Estonian University of Life Sciences. 91 pp. (In Estonian with English summary).
  8. SenseFly. [WWW document]. – URL https://www.sensefly.com/drone/ebee-x-fixed-wing-drone/. [Accessed 7 June 2022].
  9. Tang, L., Shao, G. 2015. Drone remote sensing for forestry research and practices. – Journal of Forestry Research, 26, 791–797. https://doi.org/10.1007/s11676-015-0088-y.
  10. Tomppo, E., Ronoud, G., Antropov, O., Hytönen, H., Praks, J. 2021. Detection of forest windstorm damages with multitemporal SAR data – A case study: Finland. – Remote Sensing, 13(3), 383. https://doi.org/10.3390/rs13030383.
DOI: https://doi.org/10.2478/fsmu-2022-0007 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 99 - 105
Submitted on: Jun 27, 2022
Accepted on: Sep 9, 2022
Published on: Feb 20, 2023
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Kaupo Kokamägi, Rauno Künnapuu, Natalja Liba, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.