References
- Baldocchi, D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. – Global Change Biology, 20(12), 3600–3609. https://doi.org/10.1111/gcb.12649.
- Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., del Río, M., Dodan, M., Bravo-Oviedo, A. 2019. Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. – Forest Systems, 28(1), eR002. https://doi.org/10.5424/fs/2019281-14342.
- Burba, G. 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications. Lincoln, Nebrasca, LI-COR Biosciences. 345 pp.
- Goodrich, J.P., Oechel, W.C., Gioli, B., Moreaux, V., Murphy, P.C., Burba, G., Zona, D. 2016. Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. – Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008.
- IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press. (In press).
- Jaagus, J., Mändla, K. 2014. Climate change scenarios for Estonia based on climate models from the IPCC Fourth Assessment Report. – Estonian Journal of Earth Sciences, 63(3), 166–180. https://doi.org/10.3176/earth.2014.15.
- Keronen, P., Reissell, A., Rannik, Ü., Pohja, T., Siivola, E., Hiltunen, V., Hari, P., Kulmala, M., Vesala, T. 2003. Ozone flux measurements over a Scots pine forest using eddy covariance method: performance evaluation and comparison with flux-profile method. – Boreal Environment Research, 8, 425–443.
- Kittler, F., Eugster, W., Foken, T., Heimann, M., Kolle, O., Göckede, M. 2017. High-quality eddy-covariance CO2 budgets under cold climate conditions. – Journal of Geophysical Research: Biogeosciences, 122(8), 2064–2084. https://doi.org/10.1002/2017JG003830.
- Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). – Geoscientific Model Development, 8, 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015.
- Kollo, J., Noe, S.M., Padari, A., Krasnova, A., Kangur, A. 2021. Linking SMEAR Estonia online measurements with spatial and forest growth data. – Proceedings of the 10th International Scientific Conference Rural Development 2021: Challenges for Sustainable Bioeconomy and Climate Change, Lithuania, Sept. 2021. Kaunas, (In press).
- Krasnova, A., Kukumägi, M., Mander, Ü., Torga, R., Krasnov, D., Noe, S.M., Ostonen, I., Püttsepp, Ü., Killian, H., Uri, V., Lõhmus, K., Sõber, J., Soosaar, K. 2019. Carbon exchange in a hemiboreal mixed forest in relation to tree species composition. – Agricultural and Forest Meteorology, 275, 11–23. https://doi.org/10.1016/j.agrformet.2019.05.007.
- Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O., Lubenets, K., Tulva, I., Uri, V., Zobel, M., Kull, O., Sõber, A. 2011. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. – Environmental and Experimental Botany, 72(3), 432–438. https://doi.org/10.1016/j.envexpbot.2010.09.003.
- Lõhmus, K., Rosenvald, K., Ostonen, I., Kukumägi, M., Uri, V., Tullus, A., Aosaar, J., Varik, M., Kupper, P., Torga, R., Maddison, M., Soosaar, K., Sõber, J., Mander, Ü., Kaasik, A., Sõber, A. 2019. Elevated atmospheric humidity shapes the carbon cycle of a silver birch forest ecosystem: A FAHM study. – Science of The Total Environment, 661, 441–448. https://doi.org/10.1016/j.scitotenv.2019.01.160.
- Makkonen, L. 2013. A model of hoarfrost formation on a cable. – Cold Regions Science and Technology, 85, 256–260. https://doi.org/10.1016/j.coldregions.2012.10.001.
- Makkonen, L., Laakso, T. 2005. Humidity measurements in cold and humid environments. – Boundary-Layer Meteorology, 116, 131–147. https://doi.org/10.1007/s10546-004-7955-y.
- Makkonen, L., Lehtonen, P., Helle, L. 2001. Anemometry in icing conditions. – Journal of Atmospheric and Oceanic Technology, 18(9), 1457–1469. https://doi.org/10.1175/1520-0426(2001)018<1457:AIIC>2.0.CO;2.
- Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262(2), 71–81. https://doi.org/10.1016/j.foreco.2010.09.013.
- Noe, S.M., Niinemets, Ü., Krasnova, A., Krasnov, D., Motallebi, A., Kängsepp, V., Jõgiste, K., Hõrrak, U., Komsaare, K., Mirme, S., Vana, M., Tammet, H., Bäck, J., Vesala, T., Kulmala, M., Petäjä, T., Kangur, A. 2015. SMEAR Estonia: Perspectives of a large-scale forest ecosystem-atmosphere research infrastructure. – Forestry Studies / Metsanduslikud Uurimused, 63, 56–84. https://doi.org/10.1515/fsmu-2015-0009.
- Panov, A.V., Prokushkin, A.S., Zrazhevskaya, G.K., Urban, A.B., Zyryanov, V.I., Sidenko, N.V., Heimann, M. 2021. Winter CO2 fluxes in ecosystems of Central Siberia: Comparative estimates using three different approaches. – Russian Journal of Ecology, 52(2), 126–135. https://doi.org/10.1134/S1067413621020090.
- Sepp, M., Tamm, T., Sagris, V. 2018. The future climate regions in Estonia. – Estonian Journal of Earth Sciences, 67(4), 259–268. https://doi.org/10.3176/earth.2018.19.
- Skelly, B.T., Miller, D.R., Meyer, T.H. 2002. Triple-hot-film anemometer performance in Cases-99 and a comparison with sonic anemometer measurements. – Boundary-Layer Meteorology, 105, 275–304. https://doi.org/10.1023/A:1019906521898.
- Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken, T., Leclerc, M.Y. 2008. Flux and concentration footprint modelling: State of the art. – Environmental Pollution, 152(3), 653–666. https://doi.org/10.1016/j.envpol.2007.06.070.
- Wolfram Research. 2010. PearsonChiSquareTest. [WWW Document]. – URL https://reference.wolfram.com/language/ref/PearsonChiSquareTest.html. [Accessed 4 October 2021].
- Wolfram Research. 2016. MixtureDistribution. [WWW Document]. – URL https://reference.wolfram.com/language/ref/MixtureDistribution.html. [Accessed 4 October 2021].