Have a personal or library account? Click to login
Facilitating long-term 3D sonic anemometer measurements in hemiboreal forest ecosystems Cover

Facilitating long-term 3D sonic anemometer measurements in hemiboreal forest ecosystems

Open Access
|Jun 2022

References

  1. Baldocchi, D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere - the state and future of the eddy covariance method. – Global Change Biology, 20(12), 3600–3609. https://doi.org/10.1111/gcb.12649.
  2. Bravo, F., Fabrika, M., Ammer, C., Barreiro, S., Bielak, K., Coll, L., Fonseca, T., Kangur, A., Löf, M., Merganičová, K., Pach, M., Pretzsch, H., Stojanović, D., Schuler, L., Peric, S., Rötzer, T., del Río, M., Dodan, M., Bravo-Oviedo, A. 2019. Modelling approaches for mixed forests dynamics prognosis. Research gaps and opportunities. – Forest Systems, 28(1), eR002. https://doi.org/10.5424/fs/2019281-14342.
  3. Burba, G. 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications. Lincoln, Nebrasca, LI-COR Biosciences. 345 pp.
  4. Goodrich, J.P., Oechel, W.C., Gioli, B., Moreaux, V., Murphy, P.C., Burba, G., Zona, D. 2016. Impact of different eddy covariance sensors, site set-up, and maintenance on the annual balance of CO2 and CH4 in the harsh Arctic environment. – Agricultural and Forest Meteorology, 228–229, 239–251. https://doi.org/10.1016/j.agrformet.2016.07.008.
  5. IPCC. 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press. (In press).
  6. Jaagus, J., Mändla, K. 2014. Climate change scenarios for Estonia based on climate models from the IPCC Fourth Assessment Report. – Estonian Journal of Earth Sciences, 63(3), 166–180. https://doi.org/10.3176/earth.2014.15.
  7. Keronen, P., Reissell, A., Rannik, Ü., Pohja, T., Siivola, E., Hiltunen, V., Hari, P., Kulmala, M., Vesala, T. 2003. Ozone flux measurements over a Scots pine forest using eddy covariance method: performance evaluation and comparison with flux-profile method. – Boreal Environment Research, 8, 425–443.
  8. Kittler, F., Eugster, W., Foken, T., Heimann, M., Kolle, O., Göckede, M. 2017. High-quality eddy-covariance CO2 budgets under cold climate conditions. – Journal of Geophysical Research: Biogeosciences, 122(8), 2064–2084. https://doi.org/10.1002/2017JG003830.
  9. Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P. 2015. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). – Geoscientific Model Development, 8, 3695–3713. https://doi.org/10.5194/gmd-8-3695-2015.
  10. Kollo, J., Noe, S.M., Padari, A., Krasnova, A., Kangur, A. 2021. Linking SMEAR Estonia online measurements with spatial and forest growth data. – Proceedings of the 10th International Scientific Conference Rural Development 2021: Challenges for Sustainable Bioeconomy and Climate Change, Lithuania, Sept. 2021. Kaunas, (In press).
  11. Krasnova, A., Kukumägi, M., Mander, Ü., Torga, R., Krasnov, D., Noe, S.M., Ostonen, I., Püttsepp, Ü., Killian, H., Uri, V., Lõhmus, K., Sõber, J., Soosaar, K. 2019. Carbon exchange in a hemiboreal mixed forest in relation to tree species composition. – Agricultural and Forest Meteorology, 275, 11–23. https://doi.org/10.1016/j.agrformet.2019.05.007.
  12. Kupper, P., Sõber, J., Sellin, A., Lõhmus, K., Tullus, A., Räim, O., Lubenets, K., Tulva, I., Uri, V., Zobel, M., Kull, O., Sõber, A. 2011. An experimental facility for free air humidity manipulation (FAHM) can alter water flux through deciduous tree canopy. – Environmental and Experimental Botany, 72(3), 432–438. https://doi.org/10.1016/j.envexpbot.2010.09.003.
  13. Lõhmus, K., Rosenvald, K., Ostonen, I., Kukumägi, M., Uri, V., Tullus, A., Aosaar, J., Varik, M., Kupper, P., Torga, R., Maddison, M., Soosaar, K., Sõber, J., Mander, Ü., Kaasik, A., Sõber, A. 2019. Elevated atmospheric humidity shapes the carbon cycle of a silver birch forest ecosystem: A FAHM study. – Science of The Total Environment, 661, 441–448. https://doi.org/10.1016/j.scitotenv.2019.01.160.
  14. Makkonen, L. 2013. A model of hoarfrost formation on a cable. – Cold Regions Science and Technology, 85, 256–260. https://doi.org/10.1016/j.coldregions.2012.10.001.
  15. Makkonen, L., Laakso, T. 2005. Humidity measurements in cold and humid environments. – Boundary-Layer Meteorology, 116, 131–147. https://doi.org/10.1007/s10546-004-7955-y.
  16. Makkonen, L., Lehtonen, P., Helle, L. 2001. Anemometry in icing conditions. – Journal of Atmospheric and Oceanic Technology, 18(9), 1457–1469. https://doi.org/10.1175/1520-0426(2001)018<1457:AIIC>2.0.CO;2.
  17. Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo-Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem-scale biosphere–atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. – Forest Ecology and Management, 262(2), 71–81. https://doi.org/10.1016/j.foreco.2010.09.013.
  18. Noe, S.M., Niinemets, Ü., Krasnova, A., Krasnov, D., Motallebi, A., Kängsepp, V., Jõgiste, K., Hõrrak, U., Komsaare, K., Mirme, S., Vana, M., Tammet, H., Bäck, J., Vesala, T., Kulmala, M., Petäjä, T., Kangur, A. 2015. SMEAR Estonia: Perspectives of a large-scale forest ecosystem-atmosphere research infrastructure. – Forestry Studies / Metsanduslikud Uurimused, 63, 56–84. https://doi.org/10.1515/fsmu-2015-0009.
  19. Panov, A.V., Prokushkin, A.S., Zrazhevskaya, G.K., Urban, A.B., Zyryanov, V.I., Sidenko, N.V., Heimann, M. 2021. Winter CO2 fluxes in ecosystems of Central Siberia: Comparative estimates using three different approaches. – Russian Journal of Ecology, 52(2), 126–135. https://doi.org/10.1134/S1067413621020090.
  20. Sepp, M., Tamm, T., Sagris, V. 2018. The future climate regions in Estonia. – Estonian Journal of Earth Sciences, 67(4), 259–268. https://doi.org/10.3176/earth.2018.19.
  21. Skelly, B.T., Miller, D.R., Meyer, T.H. 2002. Triple-hot-film anemometer performance in Cases-99 and a comparison with sonic anemometer measurements. – Boundary-Layer Meteorology, 105, 275–304. https://doi.org/10.1023/A:1019906521898.
  22. Vesala, T., Kljun, N., Rannik, Ü., Rinne, J., Sogachev, A., Markkanen, T., Sabelfeld, K., Foken, T., Leclerc, M.Y. 2008. Flux and concentration footprint modelling: State of the art. – Environmental Pollution, 152(3), 653–666. https://doi.org/10.1016/j.envpol.2007.06.070.
  23. Wolfram Research. 2010. PearsonChiSquareTest. [WWW Document]. – URL https://reference.wolfram.com/language/ref/PearsonChiSquareTest.html. [Accessed 4 October 2021].
  24. Wolfram Research. 2016. MixtureDistribution. [WWW Document]. – URL https://reference.wolfram.com/language/ref/MixtureDistribution.html. [Accessed 4 October 2021].
DOI: https://doi.org/10.2478/fsmu-2021-0016 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 140 - 149
Submitted on: Dec 30, 2021
Accepted on: Dec 31, 2021
Published on: Jun 4, 2022
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2022 Steffen M. Noe, Alisa Krasnova, Dmitrii Krasnov, H. Peter, E. Cordey, Ahto Kangur, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution 4.0 License.