Have a personal or library account? Click to login
Wind-induced stem breakage height effect on potentially recovered timber value: case study of the Scots pine (Pinus sylvestris L.) in Latvia Cover

Wind-induced stem breakage height effect on potentially recovered timber value: case study of the Scots pine (Pinus sylvestris L.) in Latvia

Open Access
|May 2019

References

  1. Bušs, K. 1976. Basis of forest classification in SSR of Latvia. LRZTIPI, Riga. 73 p. (In Latvian).
  2. Dhôte, J.-F. 2005. Implication of forest diversity in resistance to strong winds. – Scherer-Lorenzen, M., Körner, C., Schulze, E.D. (eds.). Forest Diversity and Function. Ecological Studies (Analysis and Synthesis), vol 176. Berlin, Springer, 291–308.10.1007/3-540-26599-6_14
  3. Donis, J. 2014. Most common tree species in Latvia site type index. – Janons, J. (eds.). Četri mežzinātnes motīvi. Daugavpils, Saule, 11–35. (In Latvian).
  4. Donis, J., Kitenberga, M., Snepsts, G., Dubrovskis, E., Jansons, A. 2018. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. – Silva Fennica, 52(4), 1–8.10.14214/sf.10009
  5. Donis, J., Zarins, J., Rokpelnis, M. 2007. Assessment of extreme wind influence on forest stands. [WWW document] – URL http://www.silava.lv/userfiles/file/Projektu%20parskati/2007_Donis_MAF_s259.pdf. [Accessed 5February2019]. (In Latvian).
  6. Gardiner, B., Berry, P., Moulia, B. 2016. Review: Wind impacts on plant growth, mechanics and damage. – Plant Science, 245, 94–118.10.1016/j.plantsci.2016.01.006
  7. Gardiner, B., Blennow, K., Carnus, J-M., Fleischer, M., Ingemarson, F., Landmann, G., Lindner, M., Marzano, M., Nicoll, B., Orazio, C., Peyron, J-L., Reviron, M-P., Schelhaas, M-J., Schuck, A., Spielmann, M., Usbeck, T. 2010. Destructive storms in European forests: Past and forthcoming impacts. Final report to DG Environment. 138 pp.
  8. Hanewinkel, M., Peyron, J.L. 2013. The economic impact of storms. – Gardiner, B., Schuck, A., Schelhaas, M-J., Orazio, C., Blennow, K., Nicoll, B. (eds.). Living with Storm Damage to Forests: What Science Can Tell Us. Joensuu, European Forest Institute, 55–63.
  9. Havašová, M., Ferenčík, J., Jakuš, R. 2017. Interactions between windthrow, bark beetles and forest management in the Tatra national parks. – Forest Ecology and Management, 391, 349–361. https://doi.org/10.1016/j.foreco.2017.01.009.10.1016/j.foreco.2017.01.009
  10. Iranparast Bodaghi, A., Nikooy, M., Naghdi, R., Venanzi, R., Latterini, F., Tavankar, F., Picchio, R. 2018. Ground-based extraction on salvage logging in two high forests: A productivity and cost analysis. – Forests, 9(12), 729–746.10.3390/f9120729
  11. Jaagus, J., Kull, A. 2011. Changes in surface wind directions in Estonia during 1966–2008 and their relationships with large-scale atmospheric circulation. – Estonian Journal of Earth Sciences, 60(4), 220–231. https://doi.org/10.3176/earth.2011.4.03.10.3176/earth.2011.4.03
  12. Jansons, Ā., Bārdulis, A., Ķēniņa, L., Lazdiņa, D., Džeriņš, E., Kāpostiņš, R. 2017. Carbon content of below-ground biomass of young Scots pines in Latvia. – Agronomy Research, 15(5), 1897–1905.
  13. Kärhä, K., Anttonen, T., Poikela, A., Palander, T., Laurén, A., Peltola, H., Nuutinen, Y. 2018. Evaluation of salvage logging productivity and costs in windthrown Norway spruce-dominated forests. – Forests, 9(5), 280–301.10.3390/f9050280
  14. Kenina, L., Bardulis, A., Matisons, R., Kapostins, R., Jansons, A. 2018. Belowground biomass models for young oligotrophic Scots pine stands in Latvia. – iForest, 11(2), 206–211.10.3832/ifor2553-010
  15. LSFS, 2018. Annual report 2017. [WWW document]. – URL https://www.zm.gov.lv/public/files/CMS_Static_Page_Doc/00/00/01/28/25/Publiskais_parskats_2017.pdf. Accessed 5 February 2019]. (In Latvian).
  16. LVM, 2006. The January 2005 wind storm influence on forests in Latvia. [WWW document]. – URL https://www.lvm.lv/images/lvm/Vetras_postijumi-lab.pdf. [Accessed 5 February 2019]. (In Latvian).
  17. LVM, 2019. Principles of timber assortment specification. [WWW document]. – URL https://www.lvm.lv/images/lvm/koksnes_produkti/ligumu_pielikumi/2019_ipusgads_izaug_iesp/apalo-kokmaterialu-specifikacijas-sagatavosanas-principi.pdf. [Accessed 5 February 2019]. (In Latvian).
  18. National Forest Inventory, 2017. National forest montioring. [WWW document]. – URL http://www.silava.lv/petijumi/nacionlais-mea-monitorings.aspx. [Accessed 5 February 2019]. (In Latvian).
  19. Nieuwenhuis, M., Fitzpatrick, P.J. 2002. An assessment of stem breakage and the reduction in timber volume and value recovery resulting from a catastrophic storm: An Irish case study. – Forestry, 75(5), 513–523.Ozolins, R. 2002. Forest stand assortment structure analysis using mathematical modelling. – Forestry Studies / Metsanduslikud Uurimused, 37, 33–42.10.1093/forestry/75.5.513
  20. Peltola, H., Gardiner, B., Nicoll, B. 2013. Mechanics of wind damage. – Gardiner, B., Schuck, A., Schelhaas, M-J., Orazio, C., Blennow, K., Nicoll, B. (eds.). Living with Storm Damage to Forests: What Science Can Tell Us. Joensuu, European Forest Institute, 31–39.
  21. Peltola, H., Kellomäki, S., Hassinen, A., Granander, M. 2000. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. – Forest Ecology and Management, 135(1–3), 143–153.10.1016/S0378-1127(00)00306-6
  22. Peltola, H., Kellomäki, S., Väisänen, H., Ikonen, V.-P. 1999. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch. – Canadian Journal of Forest Research, 29(6), 647–661.10.1139/x99-029
  23. Quine, C.P., Gardiner, B.A. 2007. Understanding how the interaction of wind and trees results in windthrow, stem breakage and canopy gap formation. – Johnson, E., Miyanishi K. (eds.). Plant Disturbance Ecology: The Process and the Response. Amsterdam, Elsevier Academic Press, 103–156.10.1016/B978-012088778-1/50006-6
  24. R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL http://www.R-project.org/. [Accessed 5 December 2018].
  25. Schelhaas, M.-J., Nabuurs, G.-J., Schuck, A. 2003. Natural disturbances in the European forests in the 19th and 20th centuries. – Global Change Biology, 9(11), 1620–1633.10.1046/j.1365-2486.2003.00684.x
  26. Schwierz, C., Köllner-Heck, P., Mutter, E.Z., Bresch, D.N., Vidale, P.-L., Wild, M., Schär, C. 2010. Modelling European winter wind storm losses in current and future climate. – Climatic Change, 101(3–4), 485–514.10.1007/s10584-009-9712-1
  27. Szwagrzyk, J., Gazda, A., Dobrowolska, D., Chećko, E., Zaremba, J., Tomski, A. 2017. Tree mortality after wind disturbance differs among tree species more than among habitat types in a lowland forest in northeastern Poland. – Forest Ecology and Management, 398, 174–184.10.1016/j.foreco.2017.04.041
DOI: https://doi.org/10.2478/fsmu-2018-0009 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 24 - 32
Published on: May 13, 2019
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Edgars Dubrovskis, Janis Donis, Eduards Racenis, Mara Kitenberga, Aris Jansons, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.