Have a personal or library account? Click to login
Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithm Cover

Construction of tree species composition map of Estonia using multispectral satellite images, soil map and a random forest algorithm

Open Access
|Jan 2019

References

  1. Adermann, V. 2010. Development of Estonian National Forest Inventory. – Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National Forest Inventories. Heidelberg, Springer, 171–184.
  2. Arumäe, T., Lang, M. 2016. ALS-based wood volume models of forest stands and comparison with forest inventory data. – Forestry Studies / Metsanduslikud Uurimused, 64, 5–16.10.1515/fsmu-2016-0001
  3. Barrett, B., Raab, C., Cawkwell, F., Green, S. 2016. Upland vegetation mapping using Random Forests with optical and radar satellite data. – Remote Sensing in Ecology and Conservation, 2(4), 212–231.10.1002/rse2.32
  4. Breiman, L. 2001. Random forests. – Machine Learning, 45(1), 5–32.10.1023/A:1010933404324
  5. Duveneck, M.J, Thomson, J.R., Wilson, B.T. 2015. An imputed forest composition map for New England screened by species range boundaries. – Forest Ecology and Management, 347, 107–115.10.1016/j.foreco.2015.03.016
  6. Forest database. 2016. State register for accounting of forest resource (Metsaressursi arvestuse riikli ku registri põhimäärus). Riigi Teataja, RT I, 12.01.2016, 2. (In Estonian).
  7. GRASS Development Team. 2017. Geographic Resources Analysis Support System (GRASS) Software, Version 7.2.2. Open Source Geospatial Foundation. [WWW document]. – URL http://grass.osgeo.org. [Accessed 1 March 2018].
  8. Kiviste, A., Hordo, M., Kangur, A., Kardakov, A., Laarmann, D., Lilleleht, A., Metslaid, S., Sims, A., Korjus, H. 2015. Monitoring and modeling of forest ecosystems: the Estonian Network of Forest Research Plots. – Forestry Studies / Metsan duslikud Uurimused, 62, 26–38.10.1515/fsmu-2015-0003
  9. Kõlli, R., Asi, E., Köster, T. 2004. Organic carbon pools in Estonian forest soils. – Baltic Forestry, 10(1), 19–26.
  10. Korjus, H., Põllumäe, P., Kiviste, A., Kangur, A., Laarmann, D., Sirgmets, R., Lang, M. 2017. Online streaming public participation in forest management planning. – Forestry Studies / Metsanduslikud Uurimused, 66, 5–13.10.1515/fsmu-2017-0001
  11. Laarmann, D., Korjus, H., Sims, A., Stanturf, J.A., Kiviste, A., Köster, K. 2009. Analysis of forest naturalness and tree mortality patterns in Estonia. – Forest Ecology and Management, 258S, S187–S195.10.1016/j.foreco.2009.07.014
  12. Lang, M., Arumäe, T., Lükk, T., Sims, A. 2014. Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data. – Forestry Studies / Metsanduslikud Uurimused, 61, 47–68.10.2478/fsmu-2014-0010
  13. Lang, M., Gulbe, L., Traškovs, A., Stepčenko, A. 2016. Assessment of different estimation algorithms and remote sensing data sources for regional level wood volume mapping in hemiboreal mixed forests. – Baltic Forestry, 22(2), 283–296.
  14. Lang, M., Kõlli, R., Nikopensius, M., Nilson, T., Neumann, M., Moreno, A. 2017. Assessment of MODIS NPP algorithm-based estimates using soil fertility and forest inventory data in mixed hemiboreal forests. – Forestry Studies / Metsanduslikud Uurimused, 66, 49–64.10.1515/fsmu-2017-0006
  15. McRoberts, R.E., Tomppo, E.O. 2007. Remote sensing support for national forest inventories. – Remote Sensing of Environment, 110, 412–419.10.1016/j.rse.2006.09.034
  16. McRoberts, R.E., Winter, S., Chirici, G., LaPoint, E. 2012. Assessing forest naturalness. – Forest Science, 58(3), 294–309.10.5849/forsci.10-075
  17. Metsakorralduse. 2017. Forest inventory act. (Metsa korraldamise juhend). – RT I, 22.02.2017, 11. (In Estonian).10.17851/1982-0739.22.2.312-314
  18. Mullakaardi. 2001. The fine-scale map of Estonian soils. (Vabariigi digitaalse suuremõõtkavalise mullastiku kaardi seletuskiri). Maa-amet, Tallinn. [WWW document]. – URL http://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/Mullastikukaart-p33.html [Accessed 16 April 2016]. (In Estonian).
  19. Niculescu-Mizil, A., Caruana, R. 2005. Predicting good probabilities with supervised learning. – Proceedings of the 22nd International Conference on Machine Learning, August 7–11, 2005, Bonn, Germany, 625–632.10.1145/1102351.1102430
  20. Nilson, T., Peterson, U. 1994. Age dependence of forest reflectance – analysis of main driving factors. – Remote Sensing of Environment, 48, 319–331.10.1016/0034-4257(94)90006-X
  21. R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [WWW document]. – URL https://www.R-project.org/ [Accessed 1 March 2018].
  22. Raudsaar, M., Pärt, E., Adermann, V. 2014. Forest resources. – Yearbook Forest 2013. Keskkonnaagentuur, Tartu. p. 37.
  23. Raudsaar, M., Sims, A., Timmusk, T., Pärt, E., Nikopensius, M. 2017. Forest resources. – Raudsaar, M., Siimon, K.-L., Valgepea, M. (eds.). Yearbook forest 2016. Keskkonnaagentuur, Tartu, 18–81.
  24. Spurr, S.H. 1948. Aerial photographs in forestry. New York, Ronald Press.
  25. SUHET. 2015. Sentinel-2 user handbook. ESA standard document. Issue 1, rev 2. 64 pp.
  26. Tamm, T., Remm, K. 2009. Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features. – International Journal of Applied Earth Observation and Geoinformation, 11, 290–297.10.1016/j.jag.2009.03.006
  27. Tomppo, E., Schadauer, K., McRoberts, R.E., Gschwantner, T., Gabler, K., Ståhl, G. 2010. History of NFIs. – Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National Forest Inventories. Heidelberg, Springer, 1–2.10.1007/978-90-481-3233-1
  28. USGS. 2016. Landsat 8 (L8) data users’ handbook. Version 2.0. Department of interior, U.S Geological survey. 98 pp.
  29. Valgepea, M., Maamets, L. 2017. Forest ownership. – Raudsaar, M., Siimon, K-L., Valgepea, M. (eds.). Yearbook forest 2016. Keskkonnaagentuur, Tartu, 82–105.
  30. Wilson, B.T., Lister, A.J., Riemann, R.I. 2012. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. – Forest Ecology and Management, 271, 182–198.10.1016/j.foreco.2012.02.002
  31. Yang, X., Rochdi, N., Zhang, J., Banting, J., Rolfson, D., King, C., Staenz, K., Patterson, S., Purdy, B. 2014. Mapping tree species in a boreal forest area using RapidEye and LiDAR data. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, 2014, 69–71. DOI: 10.1109/IGARSS.2014.6946357.10.1109/IGARSS.2014.6946357
  32. Zhao, M., Running, S.W., Heinsch, F.A., Nemani, R.R. 2011. MODIS-derived terrestrial primary production. – Ramachandran, B., Justice, C.O., Abrams, M.J. (eds.). Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS. New York, Springer-Verlag, 635–660.10.1007/978-1-4419-6749-7_28
DOI: https://doi.org/10.2478/fsmu-2018-0001 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 5 - 24
Submitted on: Mar 6, 2018
Accepted on: Jul 30, 2018
Published on: Jan 25, 2019
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2019 Mait Lang, Mihkel Kaha, Diana Laarmann, Allan Sims, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.