Have a personal or library account? Click to login
Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data / Puistute liigilise koosseisu ja tüvemahu hindamine k-lähima naabri meetodil mitmerindelistes majandatavates segametsades Cover

Estimation of standing wood volume and species composition in managed nemoral multi-layer mixed forests by using nearest neighbour classifier, multispectral satellite images and airborne lidar data / Puistute liigilise koosseisu ja tüvemahu hindamine k-lähima naabri meetodil mitmerindelistes majandatavates segametsades

Open Access
|Jun 2015

References

  1. Adermann, V. 2010. Development of Estonian National Forest Inventory. - Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National Forest Inventories. Heidelberg, Springer, 171-184.
  2. Arumäe, T., Lang, M. 2013. A simple model to estimate forest canopy base height from airborne lidar data. - Forestry Studies / Metsanduslikud Uurimused, 58, 46-56.
  3. Breidenbach, J., Nothdurfth, A., Kändler, G. 2010. Comparison of nearest neighbour approaches for small area estimation of tree species-specifi c forest inventory attributes in central Europe using airborne laser scanner data. - European Journal of Forest Research, 129, 833-846.
  4. Chirici, G., Barbati, A., Corona, P., Marchetti, M., Travaglini, D., Maselli, F., Bertini, R. 2008. Nonparametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems. - Remote Sensing of Environment, 112, 2686-2700.
  5. Fassnacht, F.E., Hartig, F., Latifi , H., Berger, C., Hernández, J., Corvalán, P., Koch, B. 2014. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. - Remote Sensing of Environment, 154, 102-114.
  6. Fazakas, Z., Nilsson, M., Olsson, H. 1999. Regional forest biomass and wood volume estimation using satellite data and ancillary data. - Agricultural and Forest Meteorology, 98/99, 417-425.
  7. Franco-Lopez, H., Ek, A., Bauer, M. 2001. Estimation and mapping of forest sand density, volume, and cover type using the k-nearest neighbors method. - Remote Sensing of Environment, 77, 251-274.
  8. Gilichinsky, M., Heiskanen, J., Barth, A., Wallerman, J., Egberth, M., Nilsson, M. 2012. Histogram matching for the calibration of kNN stem volume estimates. - International Journal of Remote Sensing, 33, 7117-7131.
  9. Holmgren, J., Joyce, S., Nilsson, M., Olsson, H. 2000. Estimating stem volume and basal area in forest compartments by combining satellite image data with fi eld data. - Scandinavian Journal of Forest Research, 15, 103-111.
  10. Howard, J.A. 1991, Remote sensing of forest resources. Chapman & Hall, London, UK. 420pp.
  11. Huiyan, G., Limin, D., Gang, W., Dong, X., Shunzhong, W., Hui, W. 2006. Estimation of forest volumes by integrating Landsat TM imagery and forest inventory data. - Science in China: Series E Technological Sciences, 49, 54-62.
  12. Kajisa, T., Murakami, T., Mizoue, N., Kitahara, F., Yoshida, S. 2008. Estimation of stand volume using k-nearest neighbors method in Kyushu, Japan. - Journal of Forest Research, 13, 249-254.
  13. Kangur, A., Sims, A., Jõgiste, K., Kiviste, A., Korjus, H., von Gadow, K. 2007. Comparative modeling of stand development in Scots pine dominated forests in Estonia. - Forest Ecology and Management, 250, 109-118.
  14. Katila, M., Tomppo, E., 2001. Selecting estimation parameters for the Finnish Multisource National Forest Inventory. - Remote Sensing of Environment, 76, 16-32.10.1016/S0034-4257(00)00188-7
  15. Kiviste, A., Hordo, M. 2002. Network of permanent forest growth plots in Estonia. - Metsanduslikud Uurimused / Metsanduslikud Uurimused, 37, 43-58.
  16. Krigul, T. 1972. Forest mensuration. (Metsatakseerimine). Valgus, Tallinn. 358 pp. (In Estonian).
  17. Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. - Forestry Studies / Metsanduslikud Uurimused, 52, 5-17.
  18. Lang, M. Lükk, T., Rähn, A., Sims, A. 2005. Change detection on permanent forest growth sample plots using satellite images. - Forestry Studies / Metsanduslikud Uurimused, 43, 24-37.
  19. Lang, M., Arumäe, T., Anniste, J. 2012. Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia. - Forestry Studies/ Metsanduslikud Uurimused, 56, 27-41.
  20. Latifi , H., Koch, B. 2012. Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands. - International Journal of Remote Sensing, 33, 6668-6694.
  21. Lõhmus, E. 2004. Estonian forest site types. (Eesti metsakasvukohatüübid). Eesti loodusfoto, Tartu. 80 pp. (In Estonian).
  22. McGaughey, R.J. 2014. FUSION/LDV: Software for LIDAR Data Analysis and visualization. March 2014 - FUSION, Version 3.42. United States Department of Agriculture Forest Service Pacifi c Northwest Research Station.
  23. McInerney, D.O., Nieuwenhuis, M. 2009. A comparative analysis of kNN and decision tree methods for the Irish National Forest Inventory. - International Journal of Remote Sensing, 30, 4937-4955.
  24. McRoberts, R.E. 2008. Using satellite imagery and the k-nearest neighbors technique as a bridge between strategic and management forest inventories. - Remote Sensing of Environment, 112, 2212-2221.
  25. McRoberts, R.E. 2012. Estimating forest attribute parameters for small areas using nearest neighbour techniques. - Forest Ecology and Management, 272, 3-12.
  26. McRoberts, R.E., Tomppo, E.O. 2007. Remote sensing support for national forest inventories. - Remote Sensing of Environment, 110, 412-419.
  27. McRoberts, R.E., Næsset, E., Gobakken, T. 2015. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. - Remote Sensing of Environment, 163, 13-22.
  28. Moeur, M., Stage, A. R. 1995. Most similar Neighbor: An improved sampling inference procedure for natural resource planning. - Forest Science, 41, 337-359.
  29. Nilson, T., Peterson, U. 1994. Age dependence of forest refl ectance - analysis of main driving factors. - Remote Sensing of Environment, 48, 319-331.
  30. Packalén, P., Maltamo, M., 2007. The k-MSN method for the prediction of species specifi c stand attributes using airborne laser scanning and aerial photographs. - Remote Sensing of Environment, 109, 328-341.10.1016/j.rse.2007.01.005
  31. Poso, S., Karlsson, M., Pekkonen, T., Härmä, P. 1990. A system for combining data from remote sensing, maps and fi eld measurement for forest planning purposes. - University of Helsinki, Department of Forest Mensuration and Management. Research notes, 23, 40 pp.
  32. R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. [WWW document]. - URL http://www.Rproject.org [Accessed 10 October 2014].
  33. Raudsaar, M., Pärt, E., Adermann, V. 2014. Review of Estonian forest resources. Yearbook Forest 2013. Compiled by Keskkonnaagentuur. OÜ Paar, Tartu, p. 1-2. (In Estonian).
  34. Tamm, T., Remm, K. 2009. Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features. - International Journal of Applied Earth Observation and Geoinformation, 11, 290-297.
  35. Tomppo, E., Gagliano, C., De Natale, F., Katila, M., McRoberts, R.E. 2009. Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery. - Remote Sensing of Environment, 113, 500-517.
  36. Tomppo, E., Schadauer, K., McRoberts, R. E., Gschwantner, T., Gabler, K., Ståhl, G. 2010. History of NFIs. - Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.E. (eds.). National Forest Inventories. Heidelberg, Springer, 1-2.
  37. Zald, H.S.J., Ohmann, J.L., Roberts, H.M., Gregory, M.J., Henderson, E.B., McGaughey, R.J., Braaten, J. 2014. Infl uence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sensing of Environment, 143, 26-38.
DOI: https://doi.org/10.2478/fsmu-2014-0010 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 47 - 68
Submitted on: Oct 27, 2014
Accepted on: Dec 10, 2014
Published on: Jun 25, 2015
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2015 Mait Lang, Tauri Arumäe, Tõnu Lükk, Allan Sims, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.