Have a personal or library account? Click to login
A Formal Proof of Stirling’s Formula Cover
Open Access
|Dec 2025

References

  1. Yves Bertot. A short presentation of Coq. In Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics (TPHOLs 2008), volume 5170 of LNCS, pages 12–16. Springer, 2008. doi:10.1007/978-3-540-71067-73.
  2. Richard Courant and Fritz John. Introduction to Calculus and Analysis I. John Wiley and Sons Inc., New York, 1st edition, 1965.
  3. Manuel Eberl. Stirling’s formula. Archive of Formal Proofs, September 2016. https://isa-afp.org/entries/Stirling_Formula.html, Formal proof development.
  4. Noboru Endou. Relationship between the Riemann and Lebesgue integrals. Formalized Mathematics, 29(4):185–199, 2021. doi:10.2478/forma-2021-0018.
  5. Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.
  6. John Harrison. Stirling’s approximation. 2010. Available online at https://github.com/jrh13/hol-light/blob/master/100/stirling.ml.
  7. Nobushige Kurokawa. Modern Trigonometric Function Theory. Iwanami Shoten, Publishers (Tokyo), 1st edition, 2013. In Japanese.
  8. Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical Proofs. Lulu Press, Morrisville, North Carolina, 2019. http://us.metamath.org/downloads/metamath.pdf.
  9. Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, pages 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79876-537.
  10. Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195–200, 2004.
  11. Yasushige Watase. Formal proof of transcendence of the number e. Part II. Formalized Mathematics, 32(1):121–131, 2024. doi:10.2478/forma-2024-0009.
  12. Yasushige Watase. Formalization of Wallis infinite product formula for π and the Wallis integral. Formalized Mathematics, 33(1):85–94, 2025. doi:10.2478/forma-2025-0007.
  13. Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/.
  14. Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.
DOI: https://doi.org/10.2478/forma-2025-0008 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 95 - 102
Submitted on: Jun 1, 2025
|
Accepted on: Sep 17, 2025
|
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Yasushige Watase, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.