Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. The Journal of Symbolic Logic, 65(2):525–549, 2000. doi:10.2307/2586554.
Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. The Bulletin of Symbolic Logic, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438.
Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers. Journal of Symbolic Logic, 66(3):1231–1258, 2001. doi:10.2307/2695104.
Harry Gonshor. An Introduction to the Theory of Surreal Numbers. London Mathematical Society Lecture Note Series, 110. Cambridge University Press, 1986. ISBN 0521312051.
Lionel Elie Mamane. Surreal numbers in Coq. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner, editors, Types for Proofs and Programs, TYPES 2004, volume 3839 of LNCS, pages 170–185. Springer, 2004. doi:10.1007/11617990 11.
J. A. Nieto, J. A. Escalante-Javalera, C. A. Somera-Patrón, and E. J. Villasenor-González. Parity of dyadic rationals and surreal numbers. Far East Journal of Mathematical Sciences (FJMS), (2):155–167, May 2024. doi:10.17654/0972087124010.
Steven Obua. Partizan games in Isabelle/HOLZF. In Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone, editors, Theoretical Aspects of Computing – ICTAC 2006, volume 4281 of LNCS, pages 272–286. Springer, 2006.
Karol Pąk. Integration of game theoretic and tree theoretic approaches to Conway numbers. Formalized Mathematics, 31(1):205–213, 2023. doi:10.2478/forma-2023-0019.
Karol Pąk and Cezary Kaliszyk. Conway normal form: Bridging approaches for comprehensive formalization of surreal numbers. In Yves Bertot, Temur Kutsia, and Michael Norrish, editors, 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.29.
Alex Ryba, Philip Ehrlich, Richard Kenyon, Jeffrey Lagarias, James Propp, and Louis Kauffman. Conway’s mathematics after Conway. Notices of the American Mathematical Society, 69:1145–1155, 2022. doi:10.1090/noti2513.
The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.
Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle framework. In Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher Order Logics, pages 33–38. Springer Berlin Heidelberg, 2008.