Have a personal or library account? Click to login
Classical Isoperimetric Theorem Cover
Open Access
|Dec 2024

References

  1. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
  2. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
  3. Viktor Blåsjö. The isoperimetric problem. The American Mathematical Monthly, 112(6): 526–566, 2005.
  4. Noboru Endou. Differentiation on interval. Formalized Mathematics, 31(1):9–21, 2023. doi:10.2478/forma-2023-0002.
  5. Noboru Endou and Yasunari Shidama. Multidimensional measure space and integration. Formalized Mathematics, 31(1):181–192, 2023. doi:10.2478/forma-2023-0017.
  6. Noboru Endou and Yasunari Shidama. Integral of continuous functions of two variables. Formalized Mathematics, 31(1):309–324, 2023. doi:10.2478/forma-2023-0025.
  7. Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from R to R and integrability for continuous functions. Formalized Mathematics, 9(2):281–284, 2001.
  8. Noboru Endou, Yasunari Shidama, and Masahiko Yamazaki. Integrability and the integral of partial functions from R into R. Formalized Mathematics, 14(4):207–212, 2006. doi:10.2478/v10037-006-0023-y.
  9. John Harrison. The HOL Light system reference. 2023. http://www.cl.cam.ac.uk/~jrh13/hol-light/reference.pdf.
  10. John Harrison. The isoperimetric inequality. 2023. Available online at https://github.com/jrh13/hol-light/blob/master/100/isoperimetric.ml.
  11. Andreas Hehl. The isoperimetric inequality. Proseminar Curves and Surfaces, Universitaet Tuebingen, Tuebingen, 2013.
  12. Peter David Lax. A short path to the shortest path. The American Mathematical Monthly, 102(2):158–159, 1995.
  13. Robert Osserman. The isoperimetric inequality. Bulletin of American Mathematical Monthly, 6(84):1182–1238, 1978.
  14. Alan Siegel. An isoperimetric theorem in plane geometry. Discrete and Computational Geometry, 29(2):239–255, 2003. doi:10.1007/s00454-002-2809-1.
  15. Marten Straatsma. Towards formalising the isoperimetric theorem. BSc thesis, Radboud University Nijmegen, 2022.
  16. Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/.
DOI: https://doi.org/10.2478/forma-2024-0015 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 187 - 194
Accepted on: Dec 14, 2024
Published on: Dec 31, 2024
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Kazuhisa Nakasho, Yasunari Shidama, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.