Have a personal or library account? Click to login
Separable Polynomials and Separable Extensions Cover

Separable Polynomials and Separable Extensions

Open Access
|Aug 2024

References

  1. Broderick Arneson and Piotr Rudnicki. Primitive roots of unity and cyclotomic polynomials. Formalized Mathematics, 12(1):59–67, 2004.
  2. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.
  3. Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
  4. Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.
  5. Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
  6. Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.
  7. Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
  8. Heinz Lüneburg. Die grundlegenden Strukturen der Algebra (in German). Oldenbourg Wisenschaftsverlag, 1999.
  9. Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461–470, 2001.
  10. Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
  11. Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.
  12. Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027.
  13. Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. Formalized Mathematics, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023.
DOI: https://doi.org/10.2478/forma-2024-0003 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 33 - 46
Accepted on: Jun 18, 2024
Published on: Aug 31, 2024
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Christoph Schwarzweller, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.