Have a personal or library account? Click to login
Elementary Number Theory Problems. Part XII – Primes in Arithmetic Progression Cover

Elementary Number Theory Problems. Part XII – Primes in Arithmetic Progression

By: Adam Grabowski  
Open Access
|Dec 2023

References

  1. Leonard Eugene Dickson. History of Theory of Numbers. New York, 1952.
  2. Adam Grabowski. Elementary number theory problems. Part VI. Formalized Mathematics, 30(3):235–244, 2022. doi:10.2478/forma-2022-0019.
  3. Adam Grabowski. Polygonal numbers. Formalized Mathematics, 21(2):103–113, 2013. doi:10.2478/forma-2013-0012.
  4. Adam Grabowski and Christoph Schwarzweller. Translating mathematical vernacular into knowledge repositories. In Michael Kohlhase, editor, Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer Science, pages 49–64. Springer, 2006. doi:10.1007/11618027 4. 4th International Conference on Mathematical Knowledge Management, Bremen, Germany, MKM 2005, July 15–17, 2005, Revised Selected Papers.
  5. Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Mizar in a nutshell. Journal of Formalized Reasoning, 3(2):153–245, 2010.
  6. Artur Korniłowicz. Flexary connectives in Mizar. Computer Languages, Systems & Structures, 44:238–250, December 2015. doi:10.1016/j.cl.2015.07.002.
  7. Artur Korniłowicz and Adam Naumowicz. Elementary number theory problems. Part V. Formalized Mathematics, 30(3):229–234, 2022. doi:10.2478/forma-2022-0018.
  8. Adam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmüller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6 22.
  9. Adam Naumowicz. Extending numeric automation for number theory formalizations in Mizar. In Catherine Dubois and Manfred Kerber, editors, Intelligent Computer Mathematics – 16th International Conference, CICM 2023, Cambridge, UK, September 5–8, 2023, Proceedings, volume 14101 of Lecture Notes in Computer Science, pages 309–314. Springer, 2023. doi:10.1007/978-3-031-42753-4 23.
  10. Christoph Schwarzweller. Proth numbers. Formalized Mathematics, 22(2):111–118, 2014. doi:10.2478/forma-2014-0013.
  11. Wacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.
  12. Wacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.
  13. Nguyen Xuan Tho. On a remark of Sierpiński. Rocky Mountain Journal of Mathematics, 52(2):717–726, 2022. doi:10.1216/rmj.2022.52.717.
  14. Rafał Ziobro. Fermat’s Little Theorem via divisibility of Newton’s binomial. Formalized Mathematics, 23(3):215–229, 2015. doi:10.1515/forma-2015-0018.
DOI: https://doi.org/10.2478/forma-2023-0022 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 277 - 286
Accepted on: Dec 18, 2023
Published on: Dec 31, 2023
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.