Have a personal or library account? Click to login
Integration of Game Theoretic and Tree Theoretic Approaches to Conway Numbers Cover

Integration of Game Theoretic and Tree Theoretic Approaches to Conway Numbers

By: Karol Pąk  
Open Access
|Dec 2023

References

  1. Maan T. Alabdullah, Essam El-Seidy, and Neveen S. Morcos. On numbers and games. International Journal of Scientific and Engineering Research, 11:510–517, February 2020.
  2. Norman L. Alling. Foundations of Analysis Over Surreal Number Fields. Number 141 in Annals of Discrete Mathematics. North-Holland, 1987. ISBN 9780444702265.
  3. John Horton Conway. On Numbers and Games. A K Peters Ltd., Natick, MA, second edition, 2001. ISBN 1-56881-127-6.
  4. Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree. Journal of Logic and Analysis, 3(1):1–26, 2011. doi:10.4115/jla.2011.3.1.
  5. Philip Ehrlich. The absolute arithmetic continuum and the unification of all numbers great and small. The Bulletin of Symbolic Logic, 18(1):1–45, 2012. doi:10.2178/bsl/1327328438.
  6. Philp Ehrlich. Number systems with simplicity hierarchies: A generalization of Conway’s theory of surreal numbers. Journal of Symbolic Logic, 66(3):1231–1258, 2001. doi:10.2307/2695104.
  7. Sebastian Koch. Natural addition of ordinals. Formalized Mathematics, 27(2):139–152, 2019. doi:10.2478/forma-2019-0015.
  8. Karol Pąk. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337–345, 2005.
  9. Karol Pąk. Conway numbers – formal introduction. Formalized Mathematics, 31(1): 193–203, 2023. doi:10.2478/forma-2023-0018.
  10. Dierk Schleicher and Michael Stoll. An introduction to Conway’s games and numbers. Moscow Mathematical Journal, 6:359–388, 2006. doi:10.17323/1609-4514-2006-6-2-359-388.
DOI: https://doi.org/10.2478/forma-2023-0019 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 205 - 213
Accepted on: Dec 12, 2023
Published on: Dec 31, 2023
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.