Have a personal or library account? Click to login
Prime Representing Polynomial with 10 Unknowns – Introduction. Part II Cover

Prime Representing Polynomial with 10 Unknowns – Introduction. Part II

By: Karol Pąk  
Open Access
|Feb 2023

References

  1. [1] Marcin Acewicz and Karol Pąk. Pell’s equation. Formalized Mathematics, 25(3):197–204, 2017. doi:10.1515/forma-2017-0019.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
  3. [3] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070
  4. [4] James P. Jones, Sato Daihachiro, Hideo Wada, and Douglas Wiens. Diophantine representation of the set of prime numbers. The American Mathematical Monthly, 83(6):449–464, 1976.10.1080/00029890.1976.11994142
  5. [5] Yuri Matiyasevich. Primes are nonnegative values of a polynomial in 10 variables. Journal of Soviet Mathematics, 15:33–44, 1981. doi:10.1007/BF01404106.
  6. [6] Karol Pąk. The Matiyasevich theorem. Preliminaries. Formalized Mathematics, 25(4): 315–322, 2017. doi:10.1515/forma-2017-0029.
  7. [7] Karol Pąk. Prime representing polynomial. Formalized Mathematics, 29(4):221–228, 2021. doi:10.2478/forma-2021-0020.
  8. [8] Karol Pąk and Cezary Kaliszyk. Formalizing a diophantine representation of the set of prime numbers. In June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving, ITP 2022, August 7-10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 26:1–26:8. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITP.2022.26.
  9. [9] Marco Riccardi. The perfect number theorem and Wilson’s theorem. Formalized Mathematics, 17(2):123–128, 2009. doi:10.2478/v10037-009-0013-y.
  10. [10] Zhi-Wei Sun. Further results on Hilbert’s Tenth Problem. Science China Mathematics, 64:281–306, 2021. doi:10.1007/s11425-020-1813-5.
DOI: https://doi.org/10.2478/forma-2022-0020 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 245 - 253
Accepted on: Dec 27, 2022
Published on: Feb 18, 2023
Published by: University of Białystok
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Karol Pąk, published by University of Białystok
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.