Have a personal or library account? Click to login
Splitting Fields for the Rational Polynomials X2−2, X2+X+1, X3−1, and X3−2 Cover

Splitting Fields for the Rational Polynomials X2−2, X2+X+1, X3−1, and X3−2

Open Access
|Dec 2022

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-817.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070
  3. [3] Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.
  4. [4] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
  5. [5] Heinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.10.1524/9783486599022
  6. [6] Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265–269, 2001.
  7. [7] Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.
  8. [8] Christoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.
  9. [9] Christoph Schwarzweller. Renamings and a condition-free formalization of Kronecker’s construction. Formalized Mathematics, 28(2):129–135, 2020. doi:10.2478/forma-2020-0012.
  10. [10] Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal polynomials. Formalized Mathematics, 28(3):251–261, 2020. doi:10.2478/forma-2020-0022.
  11. [11] Christoph Schwarzweller. Splitting fields. Formalized Mathematics, 29(3):129–139, 2021. doi:10.2478/forma-2021-0013.
  12. [12] Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185–195, 2017. doi:10.1515/forma-2017-0018.
  13. [13] Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Algebraic extensions. Formalized Mathematics, 29(1):39–48, 2021. doi:10.2478/forma-2021-0004.
DOI: https://doi.org/10.2478/forma-2022-0003 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 23 - 30
Accepted on: Apr 30, 2022
|
Published on: Dec 21, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Christoph Schwarzweller, Sara Burgoa, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.