Have a personal or library account? Click to login
Duality Notions in Real Projective Plane Cover
By: Roland Coghetto  
Open Access
|Jul 2022

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.604425130069070
  3. [3] Anthony Bordg. Projective geometry. Archive of Formal Proofs, jun 2018.
  4. [4] David Braun. Approche combinatoire pour l’automatisation en Coq des preuves formelles en géométrie d’incidence projective. PhD thesis, Université de Strasbourg, 2019.
  5. [5] Ulrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy type theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8. IEEE, 2017.10.1109/LICS.2017.8005146
  6. [6] Guillermo Calderón. Formalizing constructive projective geometry in Agda. Electronic Notes in Theoretical Computer Science, 338:61–77, 2018.10.1016/j.entcs.2018.10.005
  7. [7] Roland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21–32, 2018. doi:10.2478/forma-2018-0003.
  8. [8] Harold Scott Macdonald Coxeter. The real projective plane. Springer Science & Business Media, 1992.
  9. [9] Nikolai Vladimirovich Efimov. Géométrie supérieure. Mir, 1981.
  10. [10] Adam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.
  11. [11] Robin Hartshorne. Foundations of projective geometry. Citeseer, 1967.
  12. [12] Wojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.
  13. [13] Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.10.1007/978-3-642-21046-4_7
  14. [14] Nicolas Magaud, Julien Narboux, and Pascal Schreck. A case study in formalizing projective geometry in Coq: Desargues theorem. Computational Geometry, 45(8):406–424, 2012.
  15. [15] Jürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1_1.
DOI: https://doi.org/10.2478/forma-2021-0016 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 161 - 173
Accepted on: Sep 30, 2021
|
Published on: Jul 9, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Roland Coghetto, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.