Have a personal or library account? Click to login
Automatization of Ternary Boolean Algebras Cover

Automatization of Ternary Boolean Algebras

Open Access
|Jul 2022

References

  1. [1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
  2. [2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
  3. [3] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.10.1017/CBO9780511809088
  4. [4] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.
  5. [5] Adam Grabowski. Robbins algebras vs. Boolean algebras. Formalized Mathematics, 9(4): 681–690, 2001.
  6. [6] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.10.1007/978-3-0348-7633-9
  7. [7] Albert A. Grau. Ternary Boolean algebra. Bulletin of the American Mathematical Society, 53(6):567–572, 1947. doi:bams/1183510797.
  8. [8] E. V. Huntington. New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica. Trans. AMS, 35:274–304, 1933.10.1090/S0002-9947-1933-1501684-X
  9. [9] Violetta Kozarkiewicz and Adam Grabowski. Axiomatization of Boolean algebras based on Sheffer stroke. Formalized Mathematics, 12(3):355–361, 2004.
  10. [10] Dominik Kulesza and Adam Grabowski. Formalization of quasilattices. Formalized Mathematics, 28(2):217–225, 2020. doi:10.2478/forma-2020-0019.
  11. [11] William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.10.1007/3-540-61398-6
  12. [12] Ranganathan Padmanabhan and William McCune. Computers and Mathematics with Applications, 29(2):13–16, 1995.10.1016/0898-1221(94)00213-5
  13. [13] Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.10.1142/7007
  14. [14] Damian Sawicki and Adam Grabowski. On weakly associative lattices and near lattices. Formalized Mathematics, 29(2):77–85, 2021. doi:10.2478/forma-2021-0008.
  15. [15] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990.
DOI: https://doi.org/10.2478/forma-2021-0015 | Journal eISSN: 1898-9934 | Journal ISSN: 1426-2630
Language: English
Page range: 153 - 159
Accepted on: Sep 30, 2021
|
Published on: Jul 9, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2022 Wojciech Kuśmierowski, Adam Grabowski, published by University of Białystok
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.